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Abstract

One and two layer models are used to study flow over axisymmetric isolated
topography. Inviscid or nearly inviscid flow in which non-linear effects have order
one importance is considered, and both the effects of § and finite topography are
included.

A one-layer quasi-geostrophic model is used to find the shape of Taylor columns
on both the f-plane and the S—plane in the inviscid limit of the frictional problem.
In this limit, the boundary of the Taylor column is a streamline, and the velocity
in both directions vanishes on the boundary. The fluid within the Taylor column is
stagnant, corresponding to the solution that Ingersoll (1969) found for flow over a
right circular cylinder on the f-plane. In this case, the Taylor column is circular. An
iterative boundary integral technique is used to find the solutions for flow over a cone
on the f-plane. In this case the Taylor column has a tear drop shape. Solutions are
also found for flow on the 3-plane over a cylinder, and the Taylor column is approx-
imately elliptical for westward flow with the major axis in the z direction, while it is
slightly elongated in the y direction for eastward flow. The stagnation point of the
Taylor column is lociited on the edge of the topography for all the solutions found.
It was not possible to find solutions for smooth topographic shapes.

Steady solutions for flow over a right circular cylinder of finite height are
studied when the quasi-geostrophic approximation no longer applies. The solution
consists of two parts, one which is similar to the quasi-geostrophic solution and is
driven by the potential vorticity anomaly over the topography and the other which
is similar to the solution of potential flow around an cylinder and is driven by the
matching conditions on the edge of the topography. When the effect of 3 is large, the
transport over the topography is enhanced as the streamlines follow lines of constant
background potential vorticity. For eastward flow, the Rossby wave drag can be much
larger than predicted from quasi-geostrophic theory.




A two-layer model over finite topography using the quasi-geostrophic approx-
imation is developed. The topography is a right circular cylinder which goes all of
the way through the lower layer and an order Rossby number amount into the upper
layer, so that the quasi-geostrophic approximation can be applied consistently. This
geometry allows description of flow in which an isopycnal intersects the topography.
The model is valid for a different regime than existing models of steady flow over
finite topography in a continuously stratified fluid in which the bottom boundary is
an isopycnal surface. The solutions contain the two components that are found in the
the barotropic model of flow over finite topography. The model breaks down when
the interface goes above the topography which occurs more easily when the strati-
fication is weak. Closed streamlines occur more readily over the topography when
the stratification is weak, whereas in traditional quasi-geostrophic theory they occur
more readily when the stratification is strong. Near the topography, the interface is
depressed to the right and raised to the left (looking downstream).

A hierarchy of time-dependent models is used to examine the initial value
problem of flow initiation over topography on the f-plane. A modified contour dy-
namics method is developed that extends the range of problems to which contour
dynamics can be applied. The method allows boundary and matching conditions to
be applied on a circular boundary. A one-layer quasi-geostrophic model is used to
show that more fluid that originates over the topography remains tiiere when the flow
is turned on slowly than when it is turned on quickly. Flow over finite topography
in a one-layer model shows a variety of different behaviors depending on the topo-
graphic height. When the topography has moderate height, two cyclonic eddies are
created; when the topography fills up most of the water column, the fluid oscillates on
and off the topography as it moves around the topography in a clockwise direction,
and none of the fluid is shed downstream. Two quasi-geostrophic stratified models
are considered, one in which the topography is small, and the other in which it is
finite. In the small topography model, an eddy is shed which is cyclonic, warm—core,
and bottom-trapped. In contrast, the shed eddy is cyclonic, cold—core, and surface-
intensified in the finite depth model using the geometry described above.

Thesis Supervisor:
Dr. Glenn R. Flierl, Professor
Massachusetts Institute of Technology
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Chapter 1

Introduction

The influence of bottom topography on oceanic flow is widespread. It can alter
the path of large scale currents such as the Gulf Stream or deep western boundary
currents and can play an important role in the vertical distribution of momentum
in places such as the Antarctic circumpolar current and possibly in the large scale
circulation elsewhere. Isolated topography can greatly affect the flow pattern at the
synoptic scale. It can cause the generation of eddies, deflection of the flow field and
the creation of pockets of trapped fluid such as Taylor columns. These phenomena can
influence large scale flow and small scale features in both the dynamical patterns of
the current and density fields and the structure of passive fields, such as distribution
of flora and fauna. Topographic features can also affect the energy balance for large
scale currents by exerting drag on the flow. There are additional features which
are exhibited at shorter time and space scales than synoptic, including topographic
rectification of tidal motions, internal wave trains, enhanced boundary mixing, and

the generation of trapped topographic waves.

Isolated topograp'ty can thus influence ocean circulation over a wide range of
time and space scales. It is important to understand its effect since much of our
oceanographic intuition has been derived from the study of large and small scale

motions in the absence of topographic variations. One would like to be able to




parameterize the effect of the many topographic features in the ocean in larger cir-
culation models. The ocean bathymetry is made up of ridges, isolated seamounts
and seamount chains and fracture zones, and these features should all be understood
separately before an understanding of their effect on the general circulation can be

included in existing large scale models.

Although numerous papers have been written on the subject of flow over iso-
lated topography in a rotating fluid, there are still gaps in our understanding of the
interaction between flow and topography as applicable to the ocean. Taylor (1917)
discovered that fluid whicli is homogeneous and rapidly rotating has flow that is
nearly independent of the coordinate parallel to the axis of rotation. He observed in
the laboratory that when there is a bump in a rapidly rotating fluid with uniform
density, the flow tends to go around instead of over the topographic feature, leaving
an undisturbed column over the topography (Taylor, 1923). This phenomenon was
first called a Taylor column by Hide (1961). In a stratified fluid, a similar thing
happens, although the Taylor column tends to be bottom trapped and has a depth
dependent structure. Oceanographers have studied flow near topography to discover

if Taylor columns can be observed in the ocean.

A brief discussion of flow over isolated topography in the atmosphere is useful
for understanding how modeling of oceanic flow over isolated topography requires a
different approach than the modeling of such flow in the atmosphere. The size of
topographic variations are approximately the same in the ocean and the atmosphere,
but the ocean is more weakly stratified than the atmosphere, and the vertical pene-
tration scale relative to the total depth in the ocean is larger than in the atmosphere.
As a result Taylor columns (or caps) are more likely to be observed in the ocean
than in the atmosphere. The radius of deformation in the ocean is smaller hence
synoptic scale motions interact with smaller topographic scales. In the ocean relative

vorticity is smaller and potential vorticity anomalies foho/H (where fq is the Coriolis
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parameter, hg is the height of the topography, and H is the total depth) are relatively
more important. In contrast to the atmosphere, isolated topographic features can
take up a larger fraction of the water column in the ocean since seamounts often
reach close to the surface, requiring a different approach in the modeling of fiow over
finite topography than has been taken in the atmosphere (for more of a discussion
of the role of topography in the atmosphere and the ocean see Holloway and Muller,
1990). The modeling in this thesis has particular relevance to the ocean because it
concentrates both on the Taylor column problem in a barotropic fluid and on order

one topography in both a one and a two-layer model.

Because of the wide range of both time and space scales that isolated topogra-
phy can influence and because of variability in the background flow field, dynamical
interpretation of oceanic observations of the interaciion of flow and isolated topog-
raphy is difficult. In this thesis, we model phenomena that occur on the synoptic
scale, so we concentrate on observations relevant to this scale of motion. Studies of

the effect on flow as it passes isolated topography are limited to a few experiments.

Below we discuss some observations of flow over isolated topographic features
in the ocean, concentrating on studies of flow over seamounts. Then we review some
of the modeling that has been done on flow over isolated topography. Finally, we give

a brief overview of the thesis.

1.1 Observations of flow over isolated topography in the

ocean
Some of the first evidence of the local effect on mesoscale flow over a seamount

was given by Vastano and Warren (1976). In this study they observed flow over the

Atlantis II seamount, which rises to 1645 m from the surface of the ocean, over 3000 m
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from the bottom. With STD stations they produced maps of potential temperature
at different depths. The Gulf Stream was not stationary during their study, so that
the quasi-synoptic pictures were difficult to interpret. However, they were able to
observe a warm-core eddy over a cold-core eddy in the lee of the seamount. In
addition, below the top of the seamount, the lines of constant potential temperature
(which we interpret loosely as streamlines) split to go around the seamount. It was
not clear if there were closed streamlines over the topography because of the large

spacing between stations and the time-variability in the region.

The interpretation of these observations in terms of well understood quasi-
geostrophic dynamics is difficult partly because the seamount that Vastano and War-
ren (1976) studied was so tall. The Abyssal Topography Experiment was designed to
study flow over small topography where the dynamics were expected to be simpler.
Over a small isolated hill (500 m high) on an abyssal plain, isotherms tended to be
raised and the effects of the hill penetrated about 2.5 times its height into the water
column (Gould et al, 1981). Current meter, float, and CTD observations were used
to describe the flow over the hill. In addition to the raising of the isotherms, the
flow velocity was enhanced over the left hand side (looking downstream) of the topo-
graphic feature, qualitatively consistent with quasi-geostrophic theory. However, the
rise of the isotherms was not as high as would be expected from quasi-geostrophic
theory, indicating that the finite height of the topography (although it was only 0.1
times the total depth of the water) caused the flow to go around the topography at
the lowest levels. In this experiment it was shown that even topography as small as

this 500 m hill can have a profound influence on the flow field.

Observations of the flow structure over a seamount in the recirculation sys-
tem of the Gulf Stream indicated that, as quasi-geostrophic theory predicts, there
was anticyclonic motion over the seamount and a bottom trapped perturbation that

extended far up into the water column (Owens and Hogg, 1980). Measurements of

12




both density and direct current allowed the calculation of relative vorticity above
the seamount; it was negative and had the approximate magnitude predicted from a
quasi-geostrophic theory. The seamount studied was fairly small, rising only 400 m

from the sea floor.

Two freely drifting buoys that were originally in the Gulf Stream were observed
to loop over of the Corner Rise seamounts and continue looping in their lee (Richard-
son, 1980). These seamounts rise up within 650 m of the sea surface, indicating that
quasi-geostrophic theory is probably not relevant for the description of the flow field
near them. The buoys were trapped within a warm-core anticyclonic eddy which was
then shed downstream. The sense of the circulation is consistent with theoretically
predicted circulation for what would appear over the seamount, but inconsistent with
the sense of circulation of shed eddies in an inviscid theory. Instead, the shed eddies
could have originated over the topography, and been subsequently shed downstream

through frictional effects.

The Kuroshio crosses the Emperor Seamount Chain which reaches up within
500 m of the surface in places. Northward deflection (anticyclonic looping) of the cur-
rent north of the seamounts has been observed (Roden and Taft, 1985). Spreading
of the isotherms indicated that the current weakened over the topography. The posi-
tion of the pycnocline uplift varied from seamount to seamount. A bottom-trapped
Taylor-column-like feature was observed over the shortest seamount, but, over the
other seamounts, current meanders or shed eddies were observed. The interpretation
of the complicated density field seen in this experiment was not possible using simple
models and indicated how much we still have to understand about oceanic flow over
topography. A further review of flow over isolated seamounts including motions with

smaller time and space scales is given by Roden (1987).

It should be clear from this review of some of the observations of flow over

topography that there are several features that are not well understood. First,
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seamounts are often quite tall, so study of flow over finite topography is desirable.
Second, the response tends to be bottom trapped, or at least to appear in only part of
the water column (c.f. Vastano and Warren, 1976). This suggests the importance of
considering flow in stratified models. The complicated nature of the background flow
for any real oceanic situation makes the detailed modeling of the flow interaction difhi-
cult and time-dependent modeling necessary. In this thesis, simple flow situations are
studied to try to isolate the important dynamics that could be at work in the ocean
by including each of the effects mentioned above: finite topography, stratification,

and time-dependence.

1.2 Review of modeling results

The structure of Taylor Columns and more detailed interaction between flow and
topography have been extensively modelled since their initial discovery. With few
exceptions, the models have been limited to flows with small Rossby numbers and
small topography. Thus most of the models are quasi-geostrophic, which we suggest
above may be inadequate for discussing many important features of flow over finite
topography in the ocean. Past work has included the study of flow in homogeneous

fluid, layered fluid, and continuously stratified fluid.

Initially, the approach to the study of flow over isolated topography was to
examine it in the laboratory beginning with Taylor’s (1923) seminal work. Early
laboratory models (Hide and Ibbetson, 1966, and Hide et. al. 1968) confirm Hide’s
(1961) conjecture that the obstacle height must be greater than ahg/e for a Taylor
column to form, where a is some order one number, kg is the height of the topography
relative to the total depth of the fluid and € is the Rossby number. In the laboratory
the flow shows a pronounced left-right asymmetry looking downstream. These initial

studies were confined to f-plane homogeneous flows.
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To make analytical progress in the modeling of the stagnant Taylor column
feature, Jacobs (1964) ignored inertial effects and considered the flow in the presence
of Laplacian friction. When the flow is linear and viscous, the viscous effects are con-
fined to Ekman boundary layers on solid surfaces and to a free shear-layer coincident
with the vertical cylinder circumscribing the bottom obstacle. The flow above the
cylinder is stagnant and outside the cylinder the flow is irrotational. Under this anal-
ysis, it is assumed that the Rossby number is small while ho/e is large. The Taylor
column covers nearly all of the obstacle. The resulting flow field lacks the left-right
asymmetry seen in the laboratory, and is symmetric upstream-downstream. The
aspect ratio of the fluid is order one in Jacobs’ (1964) model, corresponding to the
laboratory situation. In the ocean, the aspect ratio is generally small, even for flow
over very tall seamounts (i.e. 5 km vertical height verses 50 km horizontal width). In
addition, non-linear terms are probably important, as can be seen by the asymmetry
in the flow field in the laboratory. Thus, the validity of this solution for oceanographic

situations is probably quite limited.

The effects of non-linearities without the influence of friction have been studied
extensively. Clearly, some combination of frictional and inertial effects is needed to
thoroughly understand the phenomenon of flow over topography in the ocean, but it
is difficult mathematically to handle the general problem. The inviscid solvtion shows
the same left-right asymmetry as is seen in the laboratory, although in an inviscid
model it is difficult to understand how the Taylor column could become stagnant.

The problem was initially considered in the quasi-geostrophic framework.

The inviscid problem has been solved in general by letting the potential vorticity-
stream function relationship be determined from upstream conditions. Once stream-
lines close, fluid is trapped and a Taylor column should form; at this point, the
potential vorticity-stream function relationship derived from upstream is question-

able within the trapped region. Within closed streamlines, the flow is not stagnant

15




and has anticyclonic circulation. These solutions could be correct over a time scale
which is much less than the spin up time of the fluid. Hogg (1973) found the solution
for flow over a right circular cylinder in a continuously stratified fluid including the
effect of background shear. The Taylor cap is conical and decays with distance above
the seamount. The effect of 3 was considered by McCartney (1975) in a two-layer
model. He found that for westward flow on the S-plane the flow looks qualitatively
similar to that on the f-plane. For eastward flow however, stationary Rossby waves
exist downstream of the topography. There have been several studies of flow which
include both the effects of continuous stratification and 3 (Janowitz, 1975; John-
son, 1977 and Johnson, 1979). All of these models have used the quasi-geostrophic

approximation.

In each model, closed streamlines form once the topography is above a certain
height as predicted by Hide (1961). These closed streamlines must spin down ulti-
mately giving a frictional solution over time scales comparable to the spin up time.
Huppert (1975) considered the problem of finding the critical height for which closed
streamlines form for flow on the f-plane for a general axisymmetric obstacle including
the effect of stratification. He found that for barotropic flow, the obstacle shape has
little effect on the results with a small change in the parameter a. For stratified flow,
if the obstacle has any vertical faces, a Taylor column forms no matter how small the

bump is.

In the inviscid solutions, fluid can be trapped within closed streamlines which
occur outside of the support of the topography. When closed streamlines occur,
fluid that is trapped within the closed streamlines originates upstream. This is not
consistent with what occurs in the laboratory. There have been several approaches
for determining the solution for the Taylor column shape once closed streamlines have
formed. Ingersoll (1969) provided a way to close the problem by allowing a different

potential vorticity-stream function relationship within closed streamlines; the fluid is
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stagnant and the stream function is constant. The flow within closed streamlines is
found by considering how bottom drag would act on the fluid in the limit of vanishing
viscosity. He found analytic solutions under special circumstances. It is not clear how

this requirement generalizes to models which contain stratification.

Another approach was given by Johnson (1983) who interpreted the Taylor
column as a region of fluid which is retained over the topography after the flow is
turned on in an initial value problem. He looked for solutions in which the maximum
amount of fluid is retained over the topography. He surmised that this solution is set
up over the advection time scale. It is identical to an Ingersoll type frictional solution
for uniform flow and flow with negative linear shear. When the background shear is
positive, the two forms of solution differ. The boundary of the Taylor column for the
maximuim retention solution is an ellipse which is contained within closed streamlines.
When the effect of the shear is large, Johnson finds the Ingersoll type solution. In
this solution, the Taylor column has finite extent in y and is infinitely long in the
z direction. The Ingersoll type frictional solution is set up over a spin-up time and

would ultimately be the steady state solution.

The more oceanographically realistic situation of topography of finite height
has also been considered in the inviscid model, although the study has been limited
primarily to situations in which the bottom boundary remains an isopycnal surface.
For the ocean this approximation is questionable because of the large fractional height
(the height of the topography relative to the total depth of the fluid) of many topo-
graphic features. Merkine and Kalnay-Rivas (1976) studied the problem using the
geostrophic momentum approximation. They found that near the topography the
flow is baroclinic, while far away it remains barotropic, and there is a trapped vortex
ov-r the topography which has flow which is independent of the incoming velocity
once the flow has been set up. This is just a consequence of conservation of potential

vorticity in the fluid that originated upstream and ends up over the topography. The
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flow field is a combination of the bound vortex and the background flow field with the
perturbation pressure field. In quasi-geostrophic solutions the flow field is simply a
linear combination of the bound vortex solution and the background flow field. Once
again, when closed streamlines form the potential vorticity-stream function relation-
ship in the trapped region is determined from upstream conditions, and the solution

is valid over a time scale less than the spin up time.

Buzzi and Speranza (1979) defined two classes of quasi-geostrophic solution
and found steady solutions for stratified flow with two obstacle shapes. First they con-
sidered flow over a hemispherical obstacle. For this geometry, they required that the
bottom surface has constant specific entropy, or potential temperature, as did Merkine
and Kalnay-Rivas (1976). The solution looks similar to other quasi-gcostrophic so-
lutions over similar obstacles. They then considered flow past a half disk standing
vertically in the fluid. In this case, the streamfunction at the wall depends only on
the vertical coordinate and is specified arbitrarily. They chose to require that the
stratification is constant on the wall. Since the flow cannot penetrate through the
wall at the lowest level, the flow has to go around the obstacle, defining a different
class of quasi-geostrophic solutions. One might expect that in a general stratified
model with flow over topography of finite vertical and horizontal cross sections, the

solutions would contain elements of the two types of solutions that they discussed.

Schar and Davies (1988) further explored this problem by considering the so-
lution in isopycnal coordinates. They required the bottom to be an isopycnal surface.
The assumptions of the model break down when the stratification is too strong or
the height of the topography is too large such that isopycnals intersect the topogra-
phy. Likewise, closed streamlines form when the stratification becomes strong or the

topography becomes large.

Steady solutions give useful insight into important dynamical processes, but

they are inadequate for two reasons. We have seen above that the oceanic flow is
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highly variable, so it is unlikely that steady state solutions could be maintained over
long periods of time. Also, we would like to understand when the steady solutions

that have been found are the final state of an appropriate initial value problem.

The initial value problem has been examined for flow over relatively small
topography. The first such study was the most ambitious. Huppert and Bryan (1976)
solved the initial value problem of flow over topography in a periodic domain using
a primitive equation model with continuous stratification. Because the stratifcation
is strong, the flow in the lowest levels goes around instead of over the topography.
The topography that they used is fairly small, comparable to the topography studied
in Gould et. al (1981). In their study they demonstrated two different flow regimes,
one in which the fluid which originated over the topography is trapped there, and
one in which it escapes downstream. The fluid which escapes is contained within
a cyclonic eddy. They also developed a simple point vortex model to help describe
some of the shed eddy’s behavior. James (1980) realized that much of the dynamics
that Huppert and Bryan (1976) found could be explained in a much simpler quasi-
geostrophic context. He considered the time-dependent forces on the topography in

a barotropic quasi-geostrophic model.

Verron and LeProvost (1985) studied the initial value problem on the S-plane.
Rossby waves are generated downstream of the topography for eastward flow. These
solutions were limited somewhat because the model is confined to a channel in y (the
north-south direction) and is periodic in z (the east-west direction). Their model
runs never reached steady state. Finally, Verron (1986) considered oscillating flow
and reproduced anticyclonic shed eddies due to the effect of bottom drag, similar to

those observed and reported by Richardson (1980).
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1.3 Overview of the thesis

The modeling of flow over seamounts in the ocean is difficult because there is a wide
range of space and time scales that need to be understood in order to fully explain
what is seen in the ocean. We choose to ignore effects of the flow that occur on
scales other than synoptic and concentrate instead on simple models that may have
qualitative relevance to flow in the ocean. We extend the work that has been done on
the modeling of flow over topography by developing models which include both the
effects of 3 and finite topography, and a simple model which allows the intersection of
an isopycnal with the topography. We consider both steady solutions and the initial
value problem. We use simple models that allow analytic or semi-analytic solutions.

The model geometries are introduced in Figure 1.1.

We look at solutions to flow over topography on three different time scales. We
extend Ingersoll’s (1969) work and study the steady-state solutions on the B-plane
to find Taylor column solutions that are valid for time scales comparable to the spin
up time. We then extend the work done on steady inviscid solutions. When closed
streamlines form, these solutions are valid for time scales short compared to the spin
up time. Finally, we study solutions to the initial value problem and model the flow
in the first few advection times. Throughout the thesis we concentrate on flow over
tall topography in which we expect there to be fluid trapped near the topography.
Flow over small bumps is studied to compare and contrast to the finite topography
work. The structure of the region of trapped fluid is different in each model as is

described below.

In Chapter 2 we use Ingersoll’s (1969) conditions on the flow at the boundary
of the Taylor column and a boundary integral technique to find solutions when closed
streamlines have formed and the action of bottom drag causes the fluid within the

closed streamlines to be stagnant. The model geometry that we use in Chapter 2
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(b)

hy 4

(d)

Figure 1.1: Side view of the four models that are considered in this chapter. In each
case there is uriform barotropic incoming flow of size U and each has a rigid lid. The
topography has radius L. a) One layer model with quasi-geostrophic topography.
The topography has height that is order Rossby number with respect to the total
layer depth. b) One layer model with finite topography. Both the topography and
the Rossby number are finite. ¢) Two layer model with small topography. The
lower layer depth is d’ while the density of the upper and lower layers is p; and p,
respectively. d) Two layer model with finite topography. The topography extends
an order Rossby number amount into the upper layer and the interface intersects the
topography. The prime quantities are dimensional.
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is shown schematically in Figure 1.l1a. We extend Ingersoll’s (1969) solutions to
flow on the #-plane and over a right circular cone on the f-plane, allowing further
understanding of Taylor columns in a barotropic quasi-geostrophic fluid. In these
solutions, the region of trapped fluid is stagnant and fluid is only trapped within a

region which is contained within the support of the topography.

The solution for westward far field flow consists of a Taylor column on the
northern side of the topography. As the horizontal extent of the topography is in-
creased and the effect of 3 becomes more important, the Taylor column becomes more
elliptical with the major axis in the east-west direction. When the far field flow is
eastward, stationary Rossby waves are generated downstream of the topography. The
size of the Taylor column is then only weakly dependent on the horizontal extent of
the topography, but its location changes as the Rossby wave pattern changes down-
stream. Additional closed streamlines appear downstream of the topography when
the effect of 3 is large. These closed streamlines do not contain stagnant fluid; thus

the solution is no longer consistent with Ingersoll’s formulation.

In Chapter 3, we allow the topography to be finite and quasi-geostrophic
theory is no longer valid as shown in Figure 1.1b. This model allows both the effects
of B and finite Rossby number and also allows horizontal divergence of fluid around
the obstacle. Because we study flow over the right circular cylinder, an analytic
solution is possible. The stream function consists of two parts, one which is odd in
y and is similar to the solution of flow around an island, and one which is even in y
and is similar to the quasi-geostrophic solution of flow over topography. As in the
inviscid models that we reviewed earlier, when closed streamlines form these solutions
are valid for a time scale short compared to the spin—up time. From this model, we
can see that there can be larger effects of the topography on the background flow
field than predicted from quasi-geostrophic theory. This is shown by calculating the

lift and drag on the obstacle, as well as the circulation induced over the obstacle.
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When the flow is eastward, a set of lee wave functions is constructed that satisfies
the correct upstream boundary conditions, and this set is used to find the solution.
When the G-effect is strong, the largest difference between the quasi-geostrophic and
finite depth solutions is seen. In this regime, there is enhanced transport over the
topography for westward flow, and the wave drag for eastward flow is much larger

than that predicted by quasi-geostrophic theory.

Since the effect of stratification is important in the ocean, we develop an in-
viscid model that shows effects resulting from the combination of finite topography
and stratification. This work extends the work of Buzzi and Speranza (1979). We
use quasi-geostrophic theory to describe the interaction of flow with an obstacle that
has finite cross section in the vertical arnd the horizontal. We consider a two-layer
model in which the topography penetrates all of the way through the lower layer and
an order Rossby number amount into the upper layer as shown in Figure 1.1d. The
topography is a right circular cylinder, and an analytic solution is found using the
same mathematical techniques we use in the finite depth one-layer solution. In this
way, the flow around a non-quasi-geostrophic topographic feature is described using
quasi-geostrophic theory. As in the barotropic solution, the stream function consists
of two parts with differing symmetries. The breakdown of the model occurs when the
interface rises above the topography, or when closed streamlines occur so that the

inviscid solution becomes suspect over long time scales.

Once the steady state solutions are understood, the initial value problem can
be examined. We only consider the first few advective time scales to look particularly
at the shedding of fluid off of the topography. We construct a hierarchy of models that
allows the simulation of the set up process in a variety of situations. The relevance
of the inviscid steady state solutions is explored as well as the dynamics that are
important when time-dependence is included. We choose to use a modified contour

dynamics model which requires that our numerical experiments be done on the f-
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plane. This allows us to isolate how stratification and finite topography affect the
eddy shedding process without resorting to simulations with a primitive equation

model.

We begin by studying a one-layer quasi~geostrophic model (Figure 1.1a) which
captures much of the important dynamics in the flow initiation process. Flow over
finite topography in a barotropic fluid is then considered (Figure 1.1b). This requires
a modification of traditional contour dynamics so that we can apply appropriate
matching conditions on the circular boundary of the topography. Next, two-layer
simulations of flow over a small (quasi-geostrophic) topographic feature are made
(Figure 1.1c). Finally, a quasi-geostrophic two-layer model of flow over a topographic
feature of finite height with the geometry described above is considered (Figure 1.1d),
where we again apply our modification to the contour dynamics method. The steady
solution in Chapter 3 helps in our understanding the results of the time-dependent

simulations.

In summary, in Chapter 2, we extend Ingersoll’s (1969) model to flow on the
B-plane. In Chapter 3, we consider two steady models of flow over finite topography
on the B-plane, a barotropic model and a two-layer model. In Chapter 4, we develop
a hierarchy of models of the initial value problem of flow over topography. In Chapter

5, we summarize the results.
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Chapter 2

Frictional Taylor columns on the S—plane

2.1 Introduction

Taylor (1917) showed that flow of a slow, steady, inviscid fluid in a rapidly rotating
tank is independent of the coordinate parallel to t-e axis of rotation; the fluid moves
about in columns whose axes are parailel to the rotation vector. Therefore, when
a fluid is obstructed by an isolated obs*ac’e that has height less than the depth of
the fluid, it tends to go around instead of over the obstacle. This phenomenon was
observed in the laboratory by Taylor (1923) and was later dubbed a Taylor column
(Hide, 1961). In laboratory experiments, the trapped fluid is stagnant, suggesting
that friction is important; hence, the fluid is spun down within the Taylor column.
Once closed streamlines form, the potential vorticity—streamfunction relationship is no
longer constrained by upstream conditions. In purely inviscid theory, it is generally
assumed that the conditions within the closed streamlines are the same as those
upstream; we call these solutions the inertial solutions. Ingersoll (1969) showed that
in the presence of even the smallest friction, the solution should approach a situation
in which the fluid is stagnant within closed streamlines, and frictional and inertial
effects both have order one importance. He constructed analytic solutions for flow over

a flat-topped obstacle in the limit of vanishing viscosity under the quasi-geostrophic
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approximation. He discussed solutions in which fluid is trapped over the topography
in a Taylor column and is spun down through the action of bottom drag. The flow
outside of the Taylor column is exactly inviscid. The solutions are set up over the
viscous spin—up time, which is much longer than the advection time for oceanic flow

regimes. The resulting solutions qualitatively agree with laboratory experiments.

Johnson (1983), on the other hand, studied solutions in which trapped fluid
is composed of fluid that originates over the topography before the flow has been
turned on. He assumed that the steady state is set up over an advective time-scale.
This process is discussed further in Chapter 4. Johnson (1983) showed that for flow
over a right circular cylinder his solutions are identical to Ingersoll’s solutions. If his
assumptions are correct, then the solution to the frictional problem can be set up
over a time scale much shorter than the spin up time, and still satisfy the conditions

necessary for the fluid within the Taylor column to be stagnant.

Both Ingersoll (1969) and Johnson (1983) suggested ways in which to com-
plete the problem of inviscid flow over topography when closed streamlines have
formed by constraining the stream function-potential vorticity relationship within
closed streamlines to be other than what exists upstream. In Johnson’s (1983) so-
lutions, the closure for the inviscid problems comes from finding the solution to the
initial value problem such that the maximum amount of fluid that originated over
the topography is retained there. Johnson (1983) showed that the maximum reten-
tion solution is the same as the solution found in the inviscid limit of the frictional
problem [Ingersoll’s (1969) type of solution] when the background flow is uniform or
has negative linear shear. For negative shear the Taylor column is elongated along
the y axis. For positive background shear, the two solutions differ. The maximum
retention solution is by construction wholly over the topography and the trapped fluid
is contained within an ellipse with major axis parallel to the z axis, while the Taylor

column in the Ingersoll type solution extends to infinity along the z axis. For all
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the cases that Johnson (1983) considered, for the Ingersoll type solutions the stagna-
tion points of the flow are either at infinite z or on the boundary of the topography.
For smooth topography the maximum retention solutions do not exist because all
fluid elements originate over the topography which is everywhere. In this chapter,
an integral equation is found that can be solved to find the general solution of the
inviscid limit of the frictional problem, Ingersoll’s type of solution, and it is applied

numerically. We extend Ingersoll’s (1969) solution by including the S—effect.

We use the inviscid solutions that McCartney (1975) found on the A-plane
as a starting point for our analysis. Like Johnson’s (1983) solutions for positive
background shear, the solutions that we find on the S-plane for westward flow are
elongated in the z direction, while for eastward flow they are slightly elongated in the

y direction, similar to Johnson’s (1983) negative shear solutions.

To summarize what is included in this chapter: the inviscid limit of the fric-
tional problem is constructed for flow over several shapes of bumps, and for flow over
right circular cylinders with the inclusion of the 3-effect, extending Ingersoll’s (1969)
solutions by numerically solving an integral equation. First the formulation of the
problem is reviewed. Then the numerical technique is developed which is used to
find the boundary of the stagnant region of fluid over the bump. Solutions of flow on
the f-plane for several different topographic shapes are discussed. Solutions when §
is non-zero are discussed for both eastward and westward flow over a right circular
cylinder. Finally, a discussion of the structure of the solutions is given as well as

speculations on properties of the solutions under more general circumstances.
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2.2 Model formulation

Under the quasi-geostrophic approximation, the governing equations of the flow in

steady state in a barotropic fluid are

1
J(d") Q) = ;V2¢1 (21)
where
h(z,
q= w + V% + By. (22)
Here, 9 is the streamfunction of the flow where ¢, = v and ¥, = —u, h is the bottom

topography, fo is the Coriolis parameter, 3 = f, the change in the Coriolis parameter
with latitude, H is the total depth of the fluid, and 7 is the spin up time, measuring
the effect of bottom drag on the flow. When r — oo there are two possible solutions,
¥ = constant or ¢ = Q(v) where the relationship between the two fields is determined
by upstream conditions. The solution with ¢ = constant corresponds to Rhines
and Young’s (1982) solution where the potential vorticity mixing acts within closed
streamlines to make the potential vorticity constant; this solution is not included
here because we are interested in situations in which bottom drag dominates. When
closed streamlines appear in the flow, Ingersoll shows that ¢ = constant is required
within closed streamlines when there is the smallest amount of bottom drag. This
condition is equivalent to Rhines and Young’s (1982) solution ¢ = constant when
the topography has constant height and the flow is on the f-plane. Outside of closed
streamlines the potential vorticity-stream function relationship is determined from

upstream conditions.

Ingersoll’s (1969) argument is based on the assumption that the closure for
the inviscid problem comes from finding the inviscid solution by taking the inviscid

limit of the frictional solution. This argument is examined below. When  is finite,
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integrating 2.1 along a closed streamline results in

ff VY - adl = 0.
Y=constant

The circulation around closed streamlines must be zero. Since the velocity along
the streamline does not change sign, the velocity must be zero within the closed
streamline. Ingersoll (1969) argued that it can be seen from 2.1 that the vorticity
V2 must be order one everywhere, although there may be layers across which it
changes abruptly. Thus there cannot be any shear layers, and the velocity must be
continuous, with a correction proportional to a power of 1/7. Ingersoll (1969) showed
that this holds when Laplacian friction is also included. We are thus left with the
condition that the velocity on the closed streamline must be zero. He suggested that
this can be understood by considering the Bernoulli function B. To first order, the
Bernoulli function is given by the pressure and it must be zero at the stagnation point.
Thus, along the boundary of the Taylor column, B = %|VP|2 = 0 where P is the
first order pressure (in a Rossby number expansion). This implies that velocity must
be zero along the closed streamline. Therefore, not only must the streamfunction be
constant, but the tangential velocity must be zero at every point on the boundary of

the spun down region. For a consistent solution, this boundary must be the outermost

closed streamline.

When 7 >> 1 (the inviscid limit) and there is uniform flow upstream, the

potential vorticity upstream of the obstacle will be given by

q = By.

The potential vorticity-streamfunction relationship is fixed by this upstream condi-

tion, and

q=—-B%/U, (2.3)
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where U is the upstream velocity. This relationship is valid for all fluid parcels that
originate upstream but is not necessarily valid for fluid parcels that are contained

within closed streamlines.

To summarize, for 7 >> 1, under the quasi-geostrophic approximation, outside
of closed streamlines, we must solve 2.3 while satisfying the condition of no flow on

any closed streamlines.

2.3 Numerical technique

The solution outlined above can be found numerically as an integral equation. The
method is similar to the method that Meacham (1988) used to find a steadily trans-
lating vortex pair on the B-plane. It has been modified here for application to this
physically different problem. When the flow is inviscid, We let 8D be the boundary

of the Taylor column, then 2.3 becomes

b h
Vit oy =2y, (24)
€
where
v =-Vy |x]|— too, (2.5)
v=C |x|eaD, (2.6)
and
oy
B =0 |x|edD, (2.7)

where 7 is the direction normal to the boundary. We have nondimensionalized 2.2
such that z,y are scaled by L, the length scale of the topography, ¢ is scaled by |U|L,
and h is a non-dimensional function scaled by H, the total depth of the fluid. We
let h be order ¢, where ¢ = |U|/foL is the Rossby number, and the flow is quasi-
geostrophic. There are three parameters in the problem, b = 3L?/|U|, the ratio of
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the long Rossby wave speed with the background flow velocity, ho/¢, the height of the
topography relative to the Rossby number, and V, the direction of the flow; V =1 for
eastward flow and V = —1 for westward flow. The constant C' determines the value
of the streamfunction on 8D and where the streamline that comes into the stagnation
point from the exterior originates upstream. JD is not contained within any closed

streamlines and the boundary 0D must be determined in the course of the solution.

The numerical technique used is a boundary integral technique related to con-
tour dynamics, reducing the problem to solving a one-dimensional problem on the
boundary of the Taylor column @D, and then iteratively solving for 8D. The proce-
dure can be summarized as follows: first the values of b and hy as well as the shape
of the topography and the direction of the flow are chosen. Next, an initial guess for
the shape of D and for the constant C are made. Then 2.4 is solved for the stream
function on the boundary 8D subject to the boundary conditions 2.5 and 2.7. Finally,
using the variations of ¥ on 0D, the boundary is adjusted such that the variation in
¢ is reduced on the boundary to satisfy 2.6. With this new estimate, the procedure is
iterated until (¢ — C)? averaged over 0D is within a certain tolerance. The resulting
boundary is not necessarily the correct one, because the boundary conditions can be
satisfied on @D while 3D is contained within a closed streamline. C must be adjusted
until there are no other closed streamlines in the flow besides 8D. Determining if the
solution contains any other closed streamlines is non-trivial, but we assume that the
correct solution is that which has the largest area and that it is uniquely determined.

This assumption is based on experience with the numerical solutions.

The solutions for which 2.4, 2.5, 2.6, and 2.7 are satisfied for an intermediate
value of C are solutions to an initial value problem of fluid which begins at rest over
the topography which is then set into motion by a background flow field being turned
on at t = 0 where some of the fluid which originated over the topography is swept

downstream while some remains over the topography. We name these intermediate
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retention solutions. Johnson’s (1983) maximum retention solution corresponds to the
situation in which all of the fluid remuins over the topography. The intermediate
retention solutions contain closed streamlines outside 8D and we show in Chapter
4 that these different solutions can be approximately realized in the initial value
problem. They are valid solution to the problem of flow over topography for times
short compared to the viscous spin up time 7 are so are not relevant to the discussion

here.

In order to derive the integral equation, we need the Green’s function for the

problem which is defined by the solution to the following partial differential equation:
VIG(x,x') + %G(x,x’) = §(x — x). (2.8)
The Green’s function depends on the value of b and V. When b is zero,
G(x,x) = — In(jx — x'|).
’ 2

When V = —1 (westward flow), the Green’s function once again depends on |x — x/|
and is given by
1 1
G(x,x') = —=—K,(b7|x — x’
(6, = - Ko(bd x — x),

where K, is the modified bessel function of the second kind and zero order. When
V = +1 (eastward flow), 2.8 is a wave-like Helmholtz equation and stationary Rossby
waves with wave number b'/? exist. Johnson (1977) derived the Green’s function in
this case. It has the property that there is no upstream energy propagation and no

longer depends simply on x — x’ but is given by
Glx,x') = Tr(b/2R) + ZS(5°R, 0),

where

S(s,a) = 3o <l ;kllay”’“(s), (2.9)

k=0

and

(z - z',y —y') = (Rcos O, Rsin O).
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In practice, the series is truncated at a finite value of k.

A particular solution (%) of 2.4 is found subject to 2.5. This solution is defined
as the inertial solution, independent of friction, which is the complete solution when
closed streamlines have not formed. This solution was found by McCartney (1975)
for the right circular cylinder, for both positive and negative V. In general it can be

found by applying Green’s theorem
P = _Vrsin8 + / G(x, x')h(x')dzdy.

The homogeneous solution ¢ that allows 3 to satisfy the boundary conditions 2.6 and

2.7 must be determined where

b=9+ 0.

Applying Green’s theorem to 2.4 gives the following integral equation

n0G(x,x') nOS _
f}m Bx) 0 ds _}gD G(x, X') 32 (x')ds’ + ¢(x) = 0 (2.10)

for any point X not on the boundary 8D. Thus if we knew both dD and ¢ on 9D,
then ¢ would be known everywhere. On the boundary, there is a singularity when
x' = x, and the integral does not exist. We use the principal value of the iniegrals in
2.10 which is a reasonable limit of the integrals as x approaches dD. Because z is on
0D, there is a factor of 1/2 introduced due to the fact that the integral is completed
by doing a half circle (instead of a full circle) around the singular point z. We use
the principal value of the contour integrals in 2.10 as the limit as x approaches x’' on
0D. Therefore, when z is on 9D 2.10 is modified:

8G b ! ! / a ’ ! 1
}f., ¢(x')——%ds _ }i, . G(x,x)—é%(x )ds' + 59(x) = 0 (2.11)

for points on the boundary. The normal derivatives are taken outward from the
boundary of the Taylor column, and ds is the element of arc along the boundary. We
use the boundary condition 2.7 and substitute 8¢/dn = —89(*)/0n so that 2.11 is a

linear inhomogeneous integral equation for ¢ on 8D as a function of arc length.
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This integral equation 2.11 is similar to the approximate equation that Johnson
(1983) used to find the boundary of a Taylor column in the limit of large positive shear.
In Section 2.4 we show that the choice of using the principal value of the integral is

correct by applying 2.11 to the analytic solution that Ingersoll (1969) found.

Once ¢ is known on the boundary, the total streamfunction can be calculated
everywhere using 2.10. In order to implement the procedure numerically, the bound-
ary is represented by N + 1 points {x : 0 < 7 < N} lying on a single closed curve.
To find ¢ on 0D, (2.11) can be discretized and put in the form of a system of si-
multaneous linear algebraic equations for the N + 1 unknowns ¢(z;), 0 < 7 < N,
which can then be solved numerically. This procedure is described in Appendix A.
The constant €' must be determined as described above. Once a solution is found for
a given topographic shape and height, the C for the desired solution can be found by
changing C to make JD larger until for a given value of C, a solution for D cannot
be found. Once a solution for a given topographic height is found, then the height
can be increased slightly, and a solution can be found for the new topographic height.
Likewise, b can be increased slowly and each successive solution found by using the
last known solution as an initial guess. The solution found analytically by Ingersoll
for flow over a right circular cylinder on the f-plane is used as a starting point for the

procedure.

The method as presented up to this point could be used for any shape of
topography as long as ¥(%) could be determined. In fact, one could construct a grid of
¥(%) over the topography so that it would not have to be determined at each iteration
step. For axisymmetric topography, and for flow on the f-plane or westward flow on
the #-plane,

P = H(r) - Vy,

where H(r) is a function depending only on r. This simplifies the calculation of the

inertial stream function (%) even further.
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This numerical procedure works well when something is known about the lo-
cation of the boundary of the Taylor column. However, when there is no such infor-
mation, it has not been possible to find a solution. There are also some indications
that the solutions can only be found when the topography is of compact support (it

is non-zero in a finite region).

From the numerical solutions found, it appears that the stagnation point of the
Taylor column is located on the line where the topography vanishes. On the f-plane,
Ingersoll (1969) pointed out that for his solutions, the Taylor column cannot exist in a
place outside the support of the topography because the solution to Laplace’s equation
is the trivial solution when both the function and its derivative vanish on a finite line.
One can see this most easily by finding the solution via a Taylor series expansion
beginning along that line. I! ’s not obvious however, why why the stagnation point is
located at the edge - ' : topography, or where the location of the stagnation point

would be for sm.o’' .. topography.

Onc way to try to answer this question is to construct the stream function
locally about the stagnation point through a Taylor series expansion, satisfying 2.4
in ithe process. We consider flow on the f-plane. For axisymmetric topography, the
stagnation point is located at z = 0 and the flow is symmetric about the y axis. The
line defined by ¥ = C is composed of two parts: the Taylor column boundary and the
line originating at the stagnation point and ending at 0. To construct the Taylor
series expansion about the stagnation point, we need to make some assumptions about
the shape of these lines locally about the stagnation point. For this discussion we
reference £ and y to the location of the stagnation point. The simplest situation is
to let £ = ay for the line that originates at +o0o. This implies that the flow field has
normal stagnation point behavior. We assume that the Taylor column boundary is
shaped like a parabola (z = cy?) locally, using intuition developed from Ingersoll’s

solution. With these two assumptions and the requirement that the velocity must
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vanish on the Taylor column boundary, a consistent solution can only be found when
the topography vanishes at the stagnation point, allowing a different Taylor series
expansion over and away from the boundary of the topography. These ideas can be
extended to the S-plane, although the condition for the existence of the solution is
somewhat more stringent than for the {-plane. The above argument suggests that the
topography must be finite in extent for the solution to exist, but it is not conclusive
both because the Taylor series expansion requires an a priori guess for the shape
of the streamline, and the solution is not found globally, but only locally about the

stagnation point.

2.4 Taylor columns on the f-plane

The simplest topographic configuration is the one considered by Ingersoll (1969), the
right circular cylinder (Figure 1.1a) where the topography h is given by

0 r»r>1
h =
hg r < 1.
Although this topography is quite special, some physically important aspects of the

flow can be discovered by considering this topographic configuration.

On the f-plane (b = 0), this problem can be solved analytically. As Ingersoll
(1969) found, when there are no closed streamlines in the flow, the inertial solution
is given by
—%%lnr-}-rsint? r>1

P(®) =
—2(r2 1)+ rsinf r<1.
where When the topographic height Ay > 2¢ closed streamlines appear in the flow

and the solution does not satisfy the additional boundary conditions. Ingersoll (1969)
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finds the solution of 2.4 subject to 2.5, 2.6, and 2.7 to be

—%%lnr—{-%ln(:—:)ﬁ—rsinﬁ r>1
P = —%%(rz—l)+2£wln(:—:)+rsin0 r<l (2.12)
constant r <l

Herer. = 1—2¢/ho, K = whor?/e, and r' is the radius referenced to z = 0, y = 2¢/hy.
The Taylor column is a circle with radius r. centered at z = 0 and y = 2¢/ho. The
boundary of the Taylor column coincides with a streamline of the inviscid solution
(Figure 2.1), and the flow is westward. When the topography becomes tall, the Taylor
column completely covers the topography approaching a circle with radius 1. The
limit of this solution for large values of ho/€ is the solution of irrotational flow around a
cylinder with exactly the circulation (47) required to give a single stagnation point on
the column boundary (e.g. Batchelor, 1967, Figure 6.6.1 (c)), and not irrotational flow
around a cylinder with zero circulation. There is a pronounced left-right asymmetry
(looking downstream) of the flow, which is characteristic of flow patterns found in

laboratory experiments.

We now proceed to apply 2.11 to the solution in 2.12 for points on dD. Since
(%) is constant there, ¢ must also be constant, and can be taken outside of the
integral. Also, 8%(®)/8n = hor./2¢, and the total derivative must vanish on the
boundary of the Taylor column so that 8¢/dn = —09%(®)/On there. We do the integrals
around the circular boundary of radius ». and we find that

G ,, 1
$ 3% = 5

and

Gds' = 1 In r..
aD 27

Finally, solving 2.11 for ¢ on dD we find




Figure 2.1: Streamlines for flow over a right circular cylinder of radius unity (dotted).
Flow is going from right to left. The streamline contour iuterval is 0.2. (a) No Taylor
column, ho/e = 1. (b) No Taylor column at the critical height ho/e = 2. (c) ho/e = 4,
Taylor column is contained within the circle and is hatched, after Ingersoll (1969).
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This is the correct answer for ¢ on 9D given from 2.12 (¢(*) is zero there). When
we apply the numerical technique we find that C = hor?lnr./2¢ as expected and the
numerically determined Taylor column boundary is identical to Ingersoll’s (1969).
This result strengthens our justification of using the principal value of the integral in
finding 2.11. The solution for this topographic configuration is found numerically to

check the procedure, and it is identical to Ingersoll’s (1969) solution.

The next most complicated topographic configuration is the right circular cone.
Experience with the numerical solutions suggest that the stagnation point of the
Taylor column is located on the edge of the topography. The topography is given by
h(r) = ho(l — r)H(1 — r) where H(r) is the step function. In this case, the inertial

solution is given by

e _bf(% — %)—rsinﬂ r>1
_Ecn(%_%-{-%lnr)—rsina r < 1.

When hg/e > 16/3 closed streamlines appear in the flow. The location of the first
stagnation point is 7 = 3/4. Solutions are found for values of ho/e for which the
stagnation point of (%) is located at a radius greater than one. As the topography
becomes small, the Taylor column boundary becomes more and more elongated in
the y direction, giving a tear drop shape (Figure 2.2). The boundary of the Taylor
column is not a streamline of the inviscid solution, unlike the solution found by

Ingersoll (1969) which is given in 2.12 (Figure 2.3).

It is interesting to note that the slope in the topography reduces the magnitude
of the circulation introduced over topography which has the same horizontal extent
and overall height, but is flat-topped. Qualitatively we expect that the effect of slope
in the topography is similar to the effect of introduction of positive circulation to
Ingersoll’s (1969) problem. As fluid parcels move up slope, their potential vorticity is
decreasing, resulting in an increase in their negative relative vorticity to compensate

for this. Thus the Taylor column is elongated perpendicular to the flow. This is
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Figure 2.2: Boundary of the Taylor column for flow over a cone of radius unity
(dashed) with flow going from right to left. ho/e = 7,8,10,15. The smallest boundary
corresponds to the smallest topographic height. The Taylor column is tangent to the
edge of the topography.
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(b)

Figure 2.3: Streamlines for flow over a cone of radius unity (dashed) with flow going
from right to left. ho/e = 15. The streamline contour interval is 0.4. (a) The inertial
solution 4(?); the Taylor column boundary is dashed and is not a streamline of the

inertial solution, and (b) the full solution.
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observed in the numerical solutions, and the solutions are similar to Johnson’s (1983)

solutions with negative shear.

It was not possible to find the solution for a value of topographic height for
which the stagnation point of the inertial solution was located at » < 1. This does not
preclude the existence of the solution, but following the tendency of the solution to
become narrowcr toward the stagnation point, one can imagine what would happen
for smaller topographic heights than those shown in Figure 2.2. The Taylor column
would become narrower, and possibly, the limit would be a line stretching from r = 1
to some interior point. If this is true, it is not surprising that it was not possible to
find solutions for smaller topographic heights. The solutions for flow over the cone
are more difficult to finl than for the right circular cylinder in the sense that a smaller

value of @, the relaxation parameter, is needed, as well as a better initial guess for

the shape of 8D.

Ingersoll (1969) found an approximate solution for flow over a cone when it is

tall. Then the boundary of the Taylor column is given approximately by
re(8) = 1 — [4e/ho(1 — sin 8)]'/2. (2.13)

In the limit of large topographic height, the shape of the Taylor column from 2.13
agrees more and more closely with the numerical solutions (Figure 2.4). One might
expect qualitative agreement between the shape of the Taylor column shown for this
example with more general topographic shapes that have a monotonic decrease in
height from » = 0 and are compact. The sense of circulation introduced by the

changing topography would be to first order the same for a cone.

James (1980) found a similar solution to the ones seen in Figure 2.2 as the
steady state solution from an initial value problem of flow over topography that was
compact with a cos?r shape. The fluid was allowed enough time to spin down within

the Taylor column. The structure of the flow is what would be expected from the

42




Figure 2.4: Boundary of the Taylor column for flow over a cone with radius unity (ciz-
ular dashed contour) and flow going from right to left. The solid contour corresponds
to the numerical solution with ho/e = 15, while the dashed contour corresponds to
Ingersoll’s (1969) approximate solution, 2.13.

43




theory presented above. However, it is difficult to determine the exact boundary of

the stagnant region from his work, and he used a finite value of friction.

An attempt was made to find the solution when the topography falls off expo-
nentially at large r. It was possible to find intermediate retention solutions in which
the boundary conditions were satisfied, but closed streamlines appeared outside of
O0D. When C was adjusted to allow 0D to become larger, the Taylor column became
larger at each iteration step, and the algorithm did not appear to be converging to-
ward a solution. This failure, together with the failure to find solutions for flow over
a cone when the stagnation point of the inertial stream function is located at r < 1
and the evidence from the Taylor series expansion about the stagnation point, all
suggest that the topography must go to zero at a finite r for a well-behaved solution
to exist. It seems that the problem that Ingersoll (1969) posed for the boundary of
the Taylor column in the inviscid limit of the frictional problem will not converge on
smooth topography; perhaps the friction enters in a more complex way than simply

an additional constraint on the inviscid solution.

2.5 Taylor columns in a westward flowing current on the

B—plane

Westward flow (V = —1) on the 3-plane is characterized by the length scale 1/5'/2,
the inertial boundary current scale. For westward flow, the stationary Rossby waves
are evanescent, so the effect of the topography is localized. Over a right circular
cylinder, the inertial solution was given by McCartney (1975) as

ho Ix(bl/z)Ko(bl/zr) r>1

P® = —rsinf 4+ ——
bV | Ky (B Io(8Y/7r) + iy v < L.
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The critical height above which closed streamlines form was found by McCartney
(1975) and is given by
he = [L(8Y%) K (V%))

and is shown in Figure 2.5. For small b the solution reduces to the f-plane result
as would be expected, while for large b, the critical height becomes large. As the
effect of 3 increases, the perturbation to the background flow is more confined to the
northernmost extent of the topography, requiring a larger bump for closed streamlines
to form. Figure 2.6 shows a series of Taylor column boundaries for a fixed value of
topographic height, while b is varied. The aspect ratio of the Taylor column becomes
smaller as b becomes larger. The limited extent of the Taylor column is seen as b
becomes large. A comparison between the inertial solution and the frictional solution
is seen in Figure 2.7. The difference is only seen out to a distance 1/b'/? away from
the Taylor column, and in Figure 2.8 we show that the boundary of the Taylor column

1s not a streamline of the inviscid solution.

The circulation induced by the F-effect is in the opposite sense of the cir-
culation induced by the topography. As a fluid parcel moves south because of the
negative circulation induced by the topography, it gains positive relative vorticity
to compensate for the change in latitude. The two effects work to compensate each
other so that the Taylor column has limited north-south extent and is confined to
the northern-most part of the topography. The Johnson (1983) solutions for positive

shear are also elongated in the z direction.

2.6 Taylor columns in an eastward flowing current

In an eastward flowing current, stationary Rossby waves are generated at the topog-
raphy. These waves cause upstream-downstream asymmetry in the flow. Because of

this, there is an associated drag on the topography, and the Taylor column is no longer
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Figure 2.5: Critical height for closed streamlines to form for westward flow over a
right circular cylinder on the B-plane as a function of b. In the limit of 4 — oo the
critical height goes to oo, while in the f-plane limit, (b = 0) the critical height is 2,
after McCartney (1975).
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Figure 2.6: Boundary of the Taylor column when ho/e = 8 and b varies from .5 up
to 10 in increments of 0.5. Flow is going westward, from right to left. The dashed
circle is the boundary of the topography. The largest Taylor column corresponds to
the smallest value of b while the smallest Taylor column correspond to the largest.
The Taylor column is tangent to the edge of the topography, and becomes elongated
in z for increasing b.
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(b)

Figure 2.7: Streamlines for westward flow over a right circular cylinder of radius unity
(dashed), ho/e = 8, and b = 1. The streamline contour interval is 0.4. (a) The inertial
solution 1(%); the Taylor column boundary is dashed. (b) The full solution. The effect
of the Taylor column is confined near the topography.
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Figure 2.8: Streamlines for westward flow over a right circular cylinder of radius unity
(dashed), ho/€e = 8, and b = 3. The streamline contour interval is 0.4. The inertial
solution (%), the Taylor column boundary is dashed and is not a streamline of the
inertial solution.
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located symmetrically about the y axis. With these considerations in mind, solutions
are found for eastward flow over a right circular cylinder. The inertial solution was

found by McCartney (1975) and is given by

J](bl/z)Y()(b]'/zT) r>1
Yi(bV2)Jo(bY2r) + 5 T < L,

ho
bl /2

ho

(@) - _rsind —
Y'Y = —rsinf — 2 eV

J1 (83 S(r,8) —-

[TE RN TE ]

where S(r,8) is given in 2.9.

The critical height when closed streamlines first form is given in general by
finding the critierion such that u{*) and v(®) are zero or that

€

hcrit

- maz[;f—o(zbg") +1)], (2.14)

subject to the constraint i, = 0 (Johnson, 1977). The critical height can be found
easily on the f-plane and for westward flow on the 3-plane as described by Hup-
pert (1975) for an axisymmetric obstacle, because 2.14 reduces to a one-dimensional
constraint. However, for eastward flow on the 8-plane, this non-linearly constrained
maximum is difficult to find. The search for the critical height is equivalent to looking
for a saddle point in the streamfunction. Part of the problem lies in the fact that
there can be regions where the total east-west velocity goes to zero in the stationary
Rossby waves that exist downstream of the topography, but the north-south velocity

does not.

Figure 2.9 shows the critical height as a function of b when closed streamlines
first appear at r = 1. For small enough b, this critical height is the global critical
height, however, when 5'/2 becomes close to the first zero of J;, the resonant solution
discussed by McCartney (1975) are valid. The resonant solution first occurs at when
ho/e = 2.65 and b = 14.86. In addition, closed streamlines can appear downstream
of the topography before they appear over the topography. The critical height that
we calculate increases with increasing b, and goes to infinity at the resonance point

b = 14.86. The location of the critical stagnation point moves from 8 = 37 /2 clockwise
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along the boundary of the topography, until the first resonance is reached (Figure
2.10). The global critical height for closed streamlines to first appear downstream

cannot be found easily because the critical stagnation point cannot be constrained.

Examples of consistent frictional solutions where closed streamlines have not
formed downstream of the topography can be found. The size of the Taylor coluinn
decreases with increasing b. It becomes slightly elongated in the north -south direction
(Figure 2.11) because the effect of the topography and the planetary vorticity on the
circulation is in the same sense so that fluid parcels must travel further to the north,
like Johnson’s (1983) solution for negative shear. The stagnation point is located on
the edge of the topography. The stream function can be calculated according to the
integral equation 2.10. The Taylor column reduces the amplitude of the downstream
waves, and the effect is felt an order one distance from the topography. The Rossby
wave amplitude is smaller in the frictional solution than in the inertial solutions
but remains a dominant feature (Figure 2.12). In the inertial solution, the flow is
enhanced over the northeast portion of the topography. This flow is reduced in the
frictional solution. Once again, the boundary of the Taylor column does not coincide
with a streamline of the inviscid solution, although the stagnation point is located at
r = 1 which helps in the search for a solution. The location of the stagnation point
of the frictional solution does not coincide with the location of the stagnation point

of the stream function at the critical height for the same value of b.

The effect of Lthe formation of the Taylor column on the downstream wave-field
can be quantified by calculating the wave drag. The wave drag is given by an integral

of the pressure around the topography;

heo }{ 4 cos 8d8.

The drag for the solutions found in Figure 2.11 are shown in Figure 2.13. The drag
is slightly larger than would have been calculated from the inertial solution alone.

As b gets larger, the Taylor column is smaller, so that the contribution from ¢ to
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Figure 2.9: Critical height for closed streamlines to form over the topography (at
r = 1) for eastward flow over a right circular cylinder on the S-plane as a function of
b. In in the f-plane limit, (b = 0) the critical height is 2. The critical height goes to
infinity at resonance points of the solution when b = 14.86 and b = 49.1.
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Figure 2.10: The location of the stagnation point in terms of the angle along the
boundary of the topography (at » = 1). The stagnation point migrates clockwise as b
increases, and then falls back to almost 6 = 37/2 (270 degrees) at the first resonance
point.




Figure 2.11: Boundary of the Taylor column when ho/e = 3 and bis 0, 0.5, 1, and 1.5.
Flow is eastward, from left to right. The largest Taylor column has b = 0, while the
smallest has b = 1.5. The Taylor column is tangent to the edge of the topography,
and becomes elongated in y for increasing b. Its location is further to the northwest
for increasing b.
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(b)

Figure 2.12: Streamlines for eastward flow over a right circular cylinder of radius
unity (dashed), ho/e = 5 and b = 0.5. The streamline contour interval is 0.4, and the
flow is from left to right. (a) The inertial solution (%), the Taylor column boundary
is dashed and is not a streamline of the inertial solution. (b) The full solution. The
effect of the Taylor column is felt downstream of the topography, and there are no
closed streamlines downstream of the topography.
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the drag becomes smaller. We have chosen to display only solutions in which closed
streamlines have not formed downstream. This requires that the amplitude of the

downstream wave field is small, resulting in less of a contribution to the drag from ¢.

When b and ho are large enough, even though the fluid over the topography
has been spun down, there are still closed streamlines down stream of the topography.
In addition, the first closed streamlines do not always appear over the topography
(Figure 2.14). Closed streamlines over the topography are less likely to form as b
increases. On the other hand, closed streamlines downstream are more likely to form
for increasing b. Therefore, there is a finite range of parameters for which one expects
to obtain Taylor column solutions in which trapped stagnant fluid is located only over

the topography, and there are no other closed streamlines in the solution.

It is important to remember that just because it is possible to find a steady-
state solution, it does not mean that it could be realized as a solution to an initial
value problem, or that the solution is stable. It has been suggested that when these
streamlines form, the flow becomes unstable via barotropic instability by the same
mechanism that Lorenz (1972) considered in his study of the instability of interacting
Rossby waves. An attempt was made to find a solution where the fluid within the
downstream closed streamlines was spun down, but the solution did not converge.
It is difficult to determine the appropriate boundary when none of the points of the
boundary can be constrained beforehand (this is the same problem that we had when
we looked for solutions for non-compact topography on the f-plane). However, this

failure could also indicate that solutions of this type are not possible.

2.7 Summary and conclusions

The solutions of spun down Taylor columns over several different topographic shapes

on the f-plane and over a right circular cylinder on the S-plane are constructed using
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Figure 2.13: Wave drag for the Taylor column solutions found in Figure 2.11. The
dashed line is the contribution from the inertial solution. The solid line is the contri-
bution from ¢.
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Figure 2.14: Streamlines for the inertial solution (%) for eastward flow over a right
circular cylinder of radius unity (dashed), hoe = 3, and b = 3. The streamline contour
interval is 0.4, and the flow is going from left to right. There are closed streamlines
downstream of the topography, but not over the topography.
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a boundary integral technique. This technique works well for finding the solutions as
long as the initial guess for the correct solution is good and an a priori constraint on
the location of the Taylor column can be obtained. For all the solutions found here, the
stagnation point of the Taylor column is located on the boundary of the topography.
Once the Taylor column boundary is known, the streamline pattern can be calculated.
It is found that flow over a right circular cylinder on the f-plane is special because the
boundary of the Taylor column is a streamline of the inertial solution. This allows an
analytic solution to the problem, but is not true for more general topographic shapes
or for flow on the F-plane. It is plausible that all of these Ingersoll type solutions
are also maximum retention solutions, where the Taylor column contains fluid that
originated over the topography in an initial value problem. In general, the solution
to this problem for an intermediate value of C is a valid solution on a time scale short

compared with 7, and in this solution D is contained within closed streamlines.

On the f-plane for flow over a cone the Taylor column is elongated in the y
direction, and has a tear drop shape. One may expect this general shape for a Taylor
column over other topographic shapes with heights that monotonically decrease from
r = 0 and have compact support. It is possible for smooth topography that the
friction has order one importance near the stagnation point, and its effect can no
longer be considered to be small everywhere, and the formulation of the problem

must be altered.

The Taylor column tends to be elongated in the z direction for westward
flows on the B-plane. For eastward flows, the Taylor columns remain more nearly
circular, but are slightly extended in y and are moved to the northwest portion of the
topography. However, the solution is valid only for relatively small topography and

small values of b; otherwise, closed streamlines appear downstream of the topography.

All of the solutions that we found in this chapter shared the characteristic that

the stagnation point of the frictional solution was located at » = 1, the boundary of
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the topography. We argue that because it is only possible to construct a solution near
the stagnation point with Taylor series expansion when the topography goes to zero
at the stagnation point, the problem that Ingersoll (1969) posed can only be solved
for topography which vanishes at a finite 7. However, the Taylor series argument is
not a proof of this. In order to investigate the existence of the solution further, an
attempt was made to find the solution numerically for flow over topography which
falls off like Ko(r) for r > 1. This attempt failed. In addition, it was not possible
to find the solution for flow over a cone when the stagnation point of the inertial
solution was located at r < 1. These two failures lead us to conclude that it is not
possible to find a solutions for Ingersoll’s (1969) problem when the topography is
smooth (analytic) everywhere. However, this conclusion is unsatisfactory, because we
know that solutions to flow over smooth topography exist when friction is finite. This
leads us to conclude that the formulation of the problem must be incorrect when the
topography is smooth. Because of this, we anticipate that friction must be of order
one importance near the stagnation point, changing the boundary conditions at 8D
and the formulation of the problem. To find out what the solution would look like
for flow over smooth topgraphy, one would like to be able to solve for the flow field
for flow over smooth tcpography (say a Guassian bump) and look at solutions in
which the bottom friction is successively decreased. Presumeably, examination of the
detailed dynamics in such an experiment would indicate appropriate approximations
to explore the limit of weak friction. However, the numerical difficulties in calculating

the flow for appropriately small frictions may be substantial.

The comparison of the solutions presented here with solutions of the initial
value problem is limited and is explored further in Chapter 4. James (1980) and
Vaziri and Boyer (1971) demonstrated that the steady solution with finite but small
friction has qualitative similarities to Ingersoll’s (1969) solution. In both of these
studies, the topography has finite extent. Verron and LeProvost (1985) solved the

initial value problem on the 3-plane. However, they did not run their model long
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enough to reach a steady state. For eastward flow, it was particularly difficult to
reach a steady state because their model was done in a channel and the Rossby waves
quickly ran into the walls. Bannon (1980) also solved the initial value problem, but
the values of friction that he used were quite high, and he does not show pictures
of his solutions for flow on the 3-plane. Unlike all of these solutions, our solution is

valid over an infinite domain.

There is a general qualitative result that is seen in both the work presented in
this chapter as well as the work of Johnson (1983). If we consider Ingersoll’s (1969)
solution as the basic solution, then the addition of background shear, 8, or variable
topography causes a modification in the shape of the circular Taylor column. The
topography introduces positive circulation. If the additional effects have the same
sign of circulation (i.e. positive shear) then the Taylor column becomes elongated
parallel to the incoming flow; likewise, if the sense of the circulation is opposite to
that of the topography (negative shear), then the Taylor column becomes elongated

perpendicular to the incoming flow. These ideas also apply to flow on the S-plane.
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Chapter 3

Steady solutions for flow over finite topography

2.1 Introduction

Because quasi-geostrophic theory breaks down when the topography becomes large, in
this chapter we look at solutions to the problem of inviscid flow over finite topography
on the B-plane. Two models are considered. Barotropic flow over finite topography
with a rigid lid is discussed first. In this idealized model, the combined effects of
B, finite topography and finite Rossby number are allowed. Because the model is
not quasi-geostrophic, ageostrophic effects exist. The differences between this model
and the quasi-geostrophic model considered by McCartney (1975) are discussed in
detail, including evaluation of the global effects of the topography on the flow. The
model is extremely idealized, requiring no depth variations in the horizontal velocity,
and the topography has the simple form of a right circular cylinder. The vertical
velocity is limited to the region where topography is varying and is zero everywhere
else. However, the physical limitations of the model do not restrict its usefulness for

understanding the qualitative structure of flow over finite topography.

The limitations of the barotropic model lead us to consider a second model

which allows both finite topography and depth variations in the velocity. We consider
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the simplest model that includes the effect of stratification: the two-layer model. Un-
fortunately, two-layer shallow-water models do not allow easy calculations of the flow
field because the interface height non-linearly couples the two layers. Therefore, we
consider a quasi-geostrophic model. In this two-layer model, the topography goes all
of the way through the lower layer and extends partly into the upper layer so that
quasi-geostrophic theory applies consistently in both layers and the fluid is always
quasi-horizontal. This allows the consideration of finite depth variations in a strat-
ified model within physically realizable parameter regimes and allows an analytical
solution. This model is restricted in usefulness because of the quasi-geostrophic re-
quirement that the topography extends only an order Rossby number amount into
the upper layer and that the flow speeds be small. However, it allows analytic ex-
ploration of a new parameter regime in which isopycnals intersect topography, in
contrast to existing simple steady models reviewed below. The idea of allowing the
lower layer depth to be slightly less than the height of the topography may have wider
oceanographic applications than the simple situation discussed here, and this model
illustrates what some restrictions of its further use might be. When closed streamlines
form the solutions that we discuss in this chapter can only be valid for times short
compared to the spin up time 7 and do not satisfy Ingersoll’s (1969) critierion for

closed streamlines.

3.2 Background

In this section, we briefly review models of flow over finite topography in both
barotropic and stratified fluids. The literature is limited because of the difficulty

of solving the problem analytically.

Johnson (1980) found the solution for flow over finite topography over a right

circular cylinder on the f-plane and he showed that when the Rossby number is
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greater than 1/4, closed streamlines will never form. Bannon (1980) considered flow
in a barotropic fluid over a Gaussian obstacle. In this study, he investigated the
effects of friction, the free-surface, finite Rossby number and non-axisymmetric ob-
stacles. He also briefly discusses the effects of 3. The presence of friction produces an
upstream-downstream asymmetry in the flow, while the free-surface allows fluid to go
more easily over the topography. Because each solution had to be found numerically,
there was limited discussion on the parameter dependence of the solution and global
quantities such as the amount of fluid blocked by the topography. He calculated the

streamlines for flow on the S-plane but showed no pictures of the flow field.

There have been several studies of stratified flow over finite topography using
both quasi-geostrophic theory and the geostrophic momentum approximation all on
the f-plane. In most cases however, these studies have been limited to models in
which the bottom is an isopycnal surface, not allowing an intersection of isopycnals

with the topography.

Merkine and Kalnay-Rivas (1976) considered stratified flow over Gaussian
topography using the geostrophic momentum approximation in a fluid with constant
stratification. This approximation allows some ageostrophic effects. The model is
inviscid, steady and on the f-plane. As in most steady inviscid models, fluid parcels
which end up over the topography are assumed to have originated upstream, even
when closed streamlines form. The solution when the background velocity is zero is
a fundamental vortex solution, independent of the upstream velocity. The vortex is
baroclinic in the near field and barotropic in the far field. Their solution is only valid
as long as the bottom boundary remains a constant potential temperature surface,
limiting the solution to weak stratification or small topography. However, they note
that increasing the stratification results in more fluid parcels going around instead
of over the obstacle. There is also an interaction between the topographic vortex

and the background flow which is not present in quasi-geostrophic theory, resulting
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in asymmetry in the flow field and some of the fluid is allowed to be split by the
topography.

Buzzi and Speranza (1979) discussed flow past finite amplitude obstacles in a
stratified fluid using the quasi-geostrophic approximation. They consider both flow
over a hemisphere with isentropic lower boundary condition, and flow over a half
disk across the basic current with different boundary conditions. The results of the
first case are similar to the Merkine and Kalnay-Rivas (1976) work. The results
of Buzzi and Speranza’s (1979) work showed that the amplitude of the disturbance
is proportional to the volume of the axisymmetric obstacle as long as the bottom
remains isentropic. In this case the flow falls off as 1/r far away from the obstacle.
This is also seen in a model by McCartney (1975) who considered a two-layer model
over quasi-geostrophic topography and by Huppert (1975). In contrast, the second
case Buzzi and Speranza (1979) considered was a obstacle of small volume but finite
vertical cross section, since it was a vertical plate of infinitesimal width. They showed
that the condition of impenetrability of a vertical wall reduces to the requirement that
the streamfunction depend only on the vertical coordinate along the wall. This case
allows flow to go around the obstacle, without actually forming closed streamlines.
This flow component decays as 1/r?, so that far from the obstacle, the dominant flow

is the anticyclonic perturbation.

In order to further understand the effect of the bottom boundary condition
on the flow, Schar and Davies (1988) discussed the effect of applying the boundary
condition at z = 0 instead of at z = h. Once again the model has an isentropic
lower boundary condition. The two boundary conditions give different results. They
quantitatively considered the breakdown of the model. When the stratification is
strong enough the model breaks down because the lower boundary can no longer
be an isopycnal surface. In addition, closed streamlines and a Taylor cap may form

when the stratification is weak enough, but these two conditions are distinct. The
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dependence on the stratification for these two breakdown criterion is similar to what

has been seen in other quasi-geostrophic models.

3.3 Flow over finite topography in one layer

The study of the interaction of finite topography and the effects of 3 have been
limited. We show in this section that, in some parameter regimes, this interaction can
produce qualitative differences from solutions in which the two effects are considered

separately.

Keeping in mind the limitations of theory in which no depth variations in the
horizontal velocity are allowed, we consider a barotropic model over finite topography.
This model is not quasi-geostrophic and includes both ageostrophic effects and the
P-effect. We consider the flow over a right circular cylinder, allowing an analytic
solution and a thorough exploration of the parameters. Since seamounts in the ocean
are often tall and steep this study may be qualitatively relevant to the ocean. This
model is similar to the model that Bannon (1980) used for his study of flow over
gaussian topography. We do not include the free-surface, and this model is inviscid
so that analytic progress can be made. The circulation induced by the topography,
the force on the topography in both the meridional and zonal directions, the amount
of fluid blocked by the topography, and the criterion for closed streamline formation
are discussed. Because each of these quantities can also be calculated for the quasi-
geostrophic model studied by McCartney (1975), a study of the breakdown of the

quasi-geostrophic approximation can be made.
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3.3.1 Model formulation

We consider inviscid flow in shallow water with a rigid lid on the S-plane. The

momentum equation is given by

b (o + By)(ax w) = VP,

and the continuity equation is

Oh

E"'V-huzo (3.1)
where

d 0

a-ateV

Here, u is the horizontal velocity, A is the depth of the fluid, f, is the Coriolis
parameter, and 3 the latitudinal derivative of the Coriolis parameter. The vertical
variaticns of the horizontal velocity can be ignored as long as the aspect ratio of the

fluid is small. We will return to this requirement later.

In steady state both the potential vorticity, @, and the Bernoulli function, B,

are conserved on streamlines where

0ttt ot By

(3.2)

h b
and
u?  ov?
B=7+-§—+P. (3.3)

Here, P ic the pressure, and the zonal and meridional components of the velocity are

u and v respectively. A transport stream function is defined in steady state by

hu = _¢y’

and

hv = ..
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Thus @ and B are both functions of ¥ in the steady state.

Assuming that there is a uniform zonal flow of size U upstream of the obstacle,

the functional relationship between @) and ¥ can be found. Upstream of the obstacle
v =-UyH

where H is the constant depth of the fluid far away from the bump. Therefore,

fo BV
H UH:?

Q(Y) = (3.4)

describes the potential vorticity as long as the fluid parcels have originated upstream.

The stream function and z and y can be scaled to obtain a non-dimensional
potential vorticity equation. If 4 is scaled by |U|HL where L is the characteristic
horizontal scale of the bump, and z and y are scaled by L, then using 3.2 and 3.4 the

non-dimensional 1 is governed by

VY b 1—h
V. —E kY = - b, (3.5)

where now ¥, z, y, and h are non-dimensional. There are three non—-dimensional
parameters in this equation, h, the non-dimensional depth of the topography, b,
defined by BL%/|U|, and the Rossby numbcr € = fo/|U|L. V in these equations is

either 1 or —1 depending on the direction of the flow.

Here, the relative vorticity not only depends on 3 but also k, allowing hori-
zontal divergence of the flow field. If h is radially symmetric, then the solution to
can be divided into an odd part in y (4,) and an even part in y (¢.). The even part
is proportional to 1/e and is forced by the first term on the right hand side of 3.5,
while the odd part is independent of ¢ and forced by the second term on the right
hand side of 3.5. For westward and f-plane flow, the stream function is also even in z.
However, because of the existence of Rossby waves the upstream boundary conditions

introduce upstream-downstream asymmetry for eastward flow as discussed below.
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For an isolated obstacle, the upstream flow remains undisturbed
p— - Vy
for westward and f-plane flow and
ri(+y)—0 F<h< (3.6)

for eastward flow (McCartney, 1975). This second boundary condition comes from

allowing no upstream energy propagation of Rossby waves.

In the quasi-geostrophic case, the @, ¢ relationship is given by 3.4, bat 3.5
becomes

b 1-h
V2 P = ) .

Notice that the size of the topography only appears on the right hand side, unlike
in 3.5. This simpler problem was solved by McCartney (1975) for flow over a right
circular cylinder. We assumed that the upstream boundary conditions remain un-
changed, but the matching conditions are that ¢ and 1, are continuous across the

boundary of the topography. The solution can be written as
b=-Vy+s

where ¢ is symmetric. The only antisymmetric part is —Vy. The pressure is equal

to 1 which is continuous at r = 1. The solution has no horizontal divergence.

The relationship between the solution of flow over tall topography and flow
around an obstacle that reaches to the surface should be mentioned. White (1971),
and McKee (1971), found the solution for flow around an island on the S-plane, but,
the island problem is not uniquely specified by the formulation given above. The
circulation around the island must be given to fully solve the problem. Normally,
the circulation is taken to be zero around the island by the following argument; if

the flow starts from rest, and circulation is never introduced into the system, then
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circulation will never develop. The stream function around the island as stated above
is completely odd in y (. = 0). As will be seen, this choice of circulation is not
the limit of a bump going to the surface. The two solutions are different because
there is always vortex stretching when flow goes over a bump and circulation must be

induced, while vorticity is never produced when inviscid flow interacts with an island.

To be able to solve the problem analytically, flow over a right circular cylin-

drical bump (Figure 1.1b) is investigated where

- he 7 <1

0 r>1
To solve for the stream function, two matching conditions are needed at r = 1. First,
by integrating the continuity equation 3.1 across r = 1, it can be seen that the
mass transport, ¥, must be continuous. We allow the tangential velocity, ¥, /h, to be
continuous also. This allows the vorticity to be finite at » = 1. This condition requires
that the pressure be discontinuous at r = 1. The requirement that the pressure is
discontinuous at the boundary of the topography is discussed further in Appendix B
where we consider the solution of flow over linearly changing topography and show

that in the limit of a finite step, the matching conditions reduce to those that we

choose here.

The functional relationship between B and 4 can be found from the upstream

boundary condition which gives

Vebyp?

B(y) =4 - ——. (3.8)

The first term is the geostrophic part of the pressure, which is the only contribution in
quasi-geostrophy. The second term results from the inclusion of 3 in the finite depth
model and being proportional to €, would vanish in the quasi-geostrophic limit. Using

3.3 and 3.8, the pressure is then

2
Py Ve - #(W + ). (3.9)
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This topography allows analytic solution of the problem. However, it requires
violation of one of the requirements of the shallow water model, that is that the
advection by the vertical velocity is small. In fact, under the shallow water equations,

the vertical velocity is given by
w = —z(uz + vy). (3.10)

From 3.10 the vertical velocity at » = 1 is proportional to a delta function since
the radial velocity changes discontinuously. In order to reconcile this we reinterpret
the model as being an approximation to smooth topography, where the scale of the
variation of the topography is small compared to the relevant length scale of the
problem (i.e. the radius of the topography), but is still much greater than the depth
of the fluid. This is the same condition that we require in Appendix B to reconcile

having discontinuous pressure.

3.3.2 Calculation of quantities derived from v

In order to analyze the soluiions to 3.5, several quantities of physical interest are
calculated, and the results for these calculations are compared to the results found
using the quasi-geostrophic approximation. These results give insight as to when
the quasi-geostrophic approximation can be used and what sort of errors result from
its use. The flow can be influenced in several ways by the topography. Circulation
is induced by the topography, the flow can be blocked by the topography, and the
flow exerts a force on the topography. These quantities can all be calculated with

knowledge of the stream function.

The flow structure is influenced by the circulation which is induced over the
topography due to fluid parcels that originate upstream being moved over the topog-

raphy. The magnitude of the circulation T, can be calculated in the usual way by
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doing a line integral about the topography.

1
I, = M{zp,da. (3.11)

Since only the symmetric part of the solution contributes to this integral, I'. is pro-
portional to 1/¢ as Bannon (1980) also pointed out. This result holds for quasi-
geostrophic flow also.

The amount of fluid that goes over the topography relative to the undisturbed
flow upstream of the topography is the blocking efficiency. This quantity is defined
by

T(y)=1- f(y—);# (3.12)

To understand this we consider each of the parts of 3.12 separately. 2Vy is the
transport approaching the obstacle between y and —y at z = 0. ¥(y) — ¢¥(—y) is the
transport between y and —y. So 1 — T is the fraction of transport passing over the
bump, and finally T is the fraction of transport diverted around the bump. Because
quasi-geostrophic theory does not allow horizontal divergence of the fluid, none of the
fluid is diverted around the obstacle, and T' = 0. Note that T(c0) = 0. When T > 0
the flow is blocked, and when T < 0 the transport is enhanced. Also, T depends
only on ,, the odd portion of the stream function, and is therefore independent of
¢. Bannon (1980) and Johnson (1978) pointed this out for f-plane flows, but it is
also true for flows on the #-plane, when the topography is radially symmetric. The
calculation of T does not take into account closed streamlines, which would alter
our notion of blocking efficiency. In the calculations made, we ignore this effect and

evaluate T at y = 1.

The flow exerts a force on the topography, o- conversely, the topography exerts
a force on the flow. The force can be divided into the drag, D, the force in the zonal
direction, and the lift L, the force in the meridional direction, which can be thought

of as the Coriolis force acting on the topography. The forces on the bump are given
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by

F= [PVhda.
Here, h is discontinuous, A, = hgé(1 — r), and the pressure is discontinuous. To
evaluate this integral, we consider a smooth, steep topography, with h, symmetric
about r = 1, close to a delta function. As the topography becomes steeper, the

integral of Ph, over r tends toward ho3(P(r = 1*) + P(r = 17)). This makes sense

if we consider the topography to be an approximation to smooth topography. Thus,
D = f.hO%(P(r =1%)+ P(r = 17))cos 6d6 (3.13)
and
1
L= thE(P(r = 1*) + P(r = 17))sin 848. (3.14)

The evalnation of the forces in the quasi-geostrophic model is simpler because the
pressure is continuous and is proportional to the stream function. To be consistent,

the press:re is evaluated by 3.9 including the quadratic terms for finite topography.

T.ie pressure can be divided into its odd and even parts P = P, + P, where

P, = %, — VeBpetho — %(zx)c,wpo, + Pegtbos),

and
(¥2+92) e (
2 2h2

P, is in ependent of €, because 1. is proportional to 1/¢ and v, i5 independent of

P =4.—VeB b + Por + e + Yop)-

e. The 'ift only depends on P,, so it too is independent of e. Meanwhile, P, has
terms prportional to € and 1/¢ so the drag is a more complicated function of €. For
westwarc flow and flow on the f-,lane, the pressure is even about the y axis, so that

the drag is zero.
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3.3.3 Solutions on the f-plane

The results in this section are not new; however, they set a context for the 3-plane
results. Ingersoll (1969) found the f-plane solutions using the quasi-geostrophic ap-
proximation, while Johnson (1978) found the finite depth solution, which is given

by

. ho ho sin 8
= — 0 - —1
¥ rsin 5 nr+2_h0 "

for r > 1, and

ho

Y= 1 ho)(r? 1) - 228

2~ ho

rsin

for r < 1. The critical height for closed streamlines to form can be found by consid-
ering the point where vy and v, are zero. The stagnation point when the height is
at the critical height occurs at § = 37/2 and r = 1 for eastward flow. The critical

height for closed streamlines to form is

hevie = 1 — /T — 4e. (3.15)

As Johnson(1978) pointed out, no closed streamlines occur when € > 1/4 no matter

how tall the bump is. When hy — 1, the solution for » > 1 becomes

Y = ——1—lnr——rsin0+ Smg.

2¢ r

The circulation is finite (I'. = —=/¢), but is not the value found by taking the limit
of Ingersoll’s (1969) frictional solution as hg/e — oo which is —4w. The solution

becomes the solution for irrotational flow around a cylinder as € becomes Jarge.

On the f-plane the quasi-geostrophic solution for 1 is

Y = —rsinf — @lnr
2¢

for r > 1, and

1/"—‘-‘"19( 2_1)—rsiné

4e
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for r < 1. The critical height in quasi-geostrophy is simply the limit of ¢ — 0 in
3.15, 2¢. The quasi-geostrophic solution underestimates the strength of the flow over
the topography, which results in an over—estimate of A.;. The blocking efficiency
for the finite depth solution T is ho/(2 — hg) which is always greater than the quasi-
geostrophic blocking efficiency of zero. This results because the quasi-geostrophic
approximation does not allow horizontal divergence of the flow caused by the finite

height of the topography.

The circulation induced by the topography is
ho

I'=—-——7x
€

for both the QG and the shallow water solutions. The lift is 7 in both formulations.

3.3.4 Solutions for westward flow on the S—plane

When the flow over the topography is to the west and the effects of 8 are included
the solution is composed of modified bessel functions K, and I,,. The introduction of

(3 traps the disturbance near the topography. For r > 1

¥ = rsin 0 + a; Ko(b'/?r) 4 a, K1 (b"/%r)sin 8

and forr < 1
= %‘hio) + byIo(kr) + boTy(xr)sin 8 + F
where
and
K? = b(1 — ho)?.

The coeflicients a1, a,, by, and b, are found from the matching conditions at r = 1,

and are not given here. The disturbance is trapped within a distance comparable to
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1/b'/2. The quasi-geostrophic approximation gives the solution (McCartney, 1975
q g p

b= rsing 4 o) HETDK(bT) >l
b2 | _ K (B2 Io(8?r) + Ay T < L.

We notice here that the quasi-geostrophic and the finite depth solutions are funda-
mentally different because the odd portion of the solution is not simply the back-

ground flow. This was true on the f-plane also.

To decide what the appropriate parameter values to consider, we consider the

Coriolis parameter where

f=fo+ By = fo(1+ bey)

where y' is dimensional and y is non-dimensional. For the topography to be located
totally in the northern hemisphere, we must require that be < 1 so that f > 1 every-
where. We restrict ourselves to cases in which this is true because we are primarily
interested in the effects of mesoscale topography on the flow field, not large scale to-
pography which straddles the equator. The oceanographic applications of this model
are probably limited to situations in which be is fairly small. In the cases we consider
below, we let hg = .6 and be = .6 so that the two effects are comparable and the
differences between the quasi-geostrophic solution and the finite depth solution can

be illustrated.

When the Rossby number is large, the finite depth solution allows fluid to be
partially split by the obstacle so that some fluid goes around the obstacle north of its
starting latitude, and the streamlines are spread over the topography. This feature
is allowed by the horizontal divergence associated with the finite depth solution and
results in blocking of the flow. Thus, the solution is more odd about the z axis,
unlike the quasi-geostrophic solution (Figure 3.1). The effect of 8 is to trap the
response close to the topography. When the Rossby number is smaller (¢ = .2), the

difference between the two solutions is not as remarkable, although the spreading of
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the streamlines over the topography is still apparent (Figure 3.2). The symmetry of

the finite depth solution is noticeably different in Figure 3.2 than in 3.1.

When b is large, the solution is qualitatively different. In this case, the stream-
lines tend to follow lines of constant background potential vorticity, and an approxi-
mate solution can be found. The relative vorticity in the potential vorticity equation
3.5 can be neglected except in boundary layers at r = 1. The streamlines follow lines

of constant y everywhere, except in the boundary layers. The solution for » > 1 is

then
. ho £ hO —
= — e 0+ ————e ¢ .
P rsm0+2(1_ho)e sin +2(1—h0)ebe (3.16)
while for r < 1
rsiné ho €(1-ho) . ho _ ho
— —  — 2 li-ho) , O 1
T AR ST 30~ ho)eb” TRy 1)

where ¢ = (r — 1)b!/? is the boundary layer variable. The solution is correct to order
1/bY/2, We have let be be order one in this solution while b is large. Thus for this
solution, € is small while Ay can be finite. Consider a fluid parcel which originates
upstream at a y location y. and has potential vorticity fo + By. If we move this parcel

over the topography to a y location y;, while conserving its potential vorticity, we

find that

ot By = LEEE

Therefore,

h
Yi = y,(l — ho) — fOBO'

Since y. > 0, fluid parcels always moves to the south over the topography in this limit.
The southward movement is larger than would be predicted from quasi-geostrophic
theory because of the finite topographic variations and the amount of fluid going over
the topography can be enhanced relative to the background flow. In addition, the

displacement is stronger in the northern part of the topography because f is larger.
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. B

(a)

Figure 3.1: Stream function for westward flow when b = .3, hy = 0.6, and ¢ = 2. In
this and all subsequent figures of contours of streamlines the contour interval is 0.4,
and the bump is represented by the circle (dashed) with radius 1. (a) Finite depth

solution, (b) quasi-geostrophic solution.
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Figure 3.2: Stream function for westward flow when b = 3, hg = 0.6, and € = .2. (a)
Finite depth solution, (b) quasi-geostrophic solution.
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In this limit the quasi-geostrophic solution can be found by simply letting hg
go to zero in 3.16 and 3.17 while keeping ho/€ and be order one:

h
P =7rsinf + Q—:be‘e

for r < 1, and

h h
z/):rsin0+~2€—(;)ef~e—z

for r < 1.

From 3.16 and 3.17, the circulation, lift, and blocking can be calculated when

b is large; .
5 _
Fe = _ebl/zaho_ ko) (3:18)
and .
T = —2_(T—Lho—)'

Note that the large b limit for the quasi-geostrophic solution gives

7l'h0
T ebl/2’

.=

as one would expect from taking the small k¢ limit of 3.18 . These quantities are
all accurate to order 1/b'/2. The interesting thing about this solution is that T is
negative because the flow is enhanced over the topography due to the conservation
of total vorticity as described above. An example of the solution when b is large
is shown in Figure 3.3. In both the quasi-geostrophic solution and the finite depth
solution, the streamlines are deflected to the south, and match to the exterior flow
field through the boundary layers. The relative vorticity for the case shown in Figure
3.3 is important because the boundary layers take up almost half of the topography

even for this large value of b.
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(b)

Figure 3.3: Stream function for westward flow when b = 20, hy = U.6, and ¢ = 0.5.
(a) Finite depth solution, (b) quasi-geostrophic solution.




Having explored the two limits of the B-plane solution, f-plane flow and large
b flow, we return to the full solution and discuss the global quantities that can be

calculated from 1.

The quasi-geostrophic circulation and the shallow water circulation are both
proportional to who/¢€, so that the two solutions can be compared as a function of b
and kg only since the dependence on the Rossby number is the same (Figure 3.4). The
quasi-geostrophic solution consistently underestimates the effect of the topography.
The shallow water solution allows an additional effect on the circulation as hg is
increased because the full solution allows horizontal divergence of the streamlines
which increases with increasing hg. The limit in 3.18 is reached slowly, since the
boundary layer solution has corrections which are order 1/b'/*. The circulation is
always smaller than that obtained on the f-plane (b = 0), since the S-effect works to

compensate the vortex squasking over the topography.

The lift is always greater than that associated with the f-plane solution (b = 0)
(Figure 3.5). The effect of 3 is to keep the streamlines more nearly aligned with the
lines of constant (fo + By)/h. As b increases, the odd portion of the stream function,
Yo, dominates. This effect was illustrated in the boundary layer solution above. The
quadratic terms in the pressure also contribute to the lift, rectifying the even part of

¥, and contributing to the force on the topography.

When b is small, the blocking is larger for larger kg, but is less than the value
on the f-plane. Because the §-effect helps to compensate the vortex squashing caused
by fluid parcels rising up on the topography, the fluid tends to go more easily over
the topography than be diverted by the topography on the S-plane (Figure 3.6).
However, when b becomes large, ihe blocking efficiency is negative as we predicted
from the boundary layer solution. In this case, the fluid parcels conserve background
potential vorticity ((fo + #y)/h| and the streamlines become close together over the

topography, resulting in enhanced transport. This effect can be seen in Figure 3.3.
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Figure 3.4: The circulation I'. for westward flow. The quasi-geostrophic solution
(lower solid line), the shallow water solution for kg of 0.2 (dashed line), 0.4 (dashed-
dotted line), 0.6 (dotted line) and 0.8 (solid line). It is shown in units of hom/e. The
sign of the circulation is always negative (anticyclonic).
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Figure 3.5: Lift L for westward flow for the shallow water solution for kg of 0.2 (dashed
line), 0.4 (dotted line), 0.6 (dotted-dashed line) and 0.8 (solid line). It is shown in
units of 7 so that the quasi-geostrophic lift has magnitude 1.
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Figure 3.6: Blocking efficiency T for westward flow for the shallow water solution for
ho of 0.2 (dashed line), 0.4 (dotted line), 0.6 (dotted-dashed line) and 0.8 (solid line).
Blocking efficiency for the quasi-geostrophic solution is 0.
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Closed streamlines occur less easily for the shallow water model than for the
quasi-geostrophic solution. The first stagnation point occurs on the boundary of the
topography, as for the f-plane, and at § = 7/2. To find the critical height, ., at

6 = x/2, r =11s set to zero to get the transcendental equation

1

(—i—:'}—lo—) + blﬂI(’](K,) + bzﬁ]{(ﬂ) = 0, (319)

where b, is proportional to 1/¢ and both b, and b; are complicated functions of b and
ho. The critical height is then a function of both b and e. However, a simple solution
can be found for the critical Rossby number above which no closed streamlines exist.
This is done by solving for € in 3.19 and letting ho go to one as the upper limit on
the height of the topography. Above this point, the critical height is greater than 1,
which is unphysical. Then

Kl(bl/z)
Cmaz )
2 (b1/2Ko(b1/2) + 2K, (b1/2))

where we have substituted in the forms of b, and b,. The f-plane limit of 1/4 can
be found by letting b go to zero. The critical Rossby number is a monotonically

decreasing function of b that approaches zero as b—oo.

For the quasi-geostrophic model, the critical height for closed streamlines to

occur is given by
€

Il(bl/z)Kl(bl/Z) )
A critical Rossby number can then be found for the quasi-geostrophic model by letting

Berie = (3.20)

herie = 1 in 3.20 (Figure 3.7). The quasi-geostrophic solution always gives a higher
value than the shallow water model because the shallow water model allows the flow
to be accelerated over the topography, so that it is harder for closed streamlines to
form. For small Rossby numbers, it is unlikely that closed streamlines will develop

for topographies with large horizontal extent in the barotropic model.
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Figure 3.7: Maximum Rossby number for closed streamlines to occur for the quasi-
geostrophic (solid line) and the finite depth (dashed line) solutions for westward flow.
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3.3.5 Solutions for eastward flow on the S—plane

The behavior on the 8 plane for eastward flow is very different from westward flow.
For eastward flow, due to the anticyclonic vorticity over the topography, fluid parcels
are forced to the north, this in turn increases the the potential vorticity due to the
B effect, and more anticyclonic relative vorticity is generated. Thus the f-effect and
vortex squashing cannot balance each other. The excess relative vorticity induced
causes the streamlines to move well away from their starting latitude and the Rossby
restoring force generates downstream stationary Rossby waves, as can be seen in the
wave-like solutions given below. Therefore, when the flow is toward the east, the

additional boundary condition 3.6 must be applied.

In order to find the solution that satisfies the boundary condition we use the
approach that Miles and Huppert (1968) took to find the solution in an analogous
system of flow in a stratified fluid over a semi-circular obstacle. The resulting equa-
tion for the streamlines (in z,z space) is identical to 3.5. They constructed lee wave
functions that satisfy the boundary condition individually, and then used these func-
tions to find the solution. In fact, the solution that t.  found is exactly the solution
for flow impinging on an island with zero circulation as described by McKee (1971).
They required functions that were odd in y. For our problem both the even and the

odd functions are needed.

The lee wave functions are constructed such that they each satisfy the bound-

ary coundition asymptotically and are given by
82(r,8) = Y,(b"/%r)sin n + ¢2(r,8)
for the odd functions and

8:(r,8) = Yn(bl/zr) cosnf + ¢S(r,0)
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for the even functions where
$a(r,0) = 3 Jo(b'/%r)sin qf
q=1

and

&(r,0) = ZJ (6'/27) cos q.

g=1

The finite depth solution for » > 1 can be written as a sum over the lee wave

functions, and by changing the order of summation, we get that

% = —rsinf + i { [E g Zng(b'/%r) ] sinnf + [i ch,,q(bl/zr)] cos n0}

n=0 q.—.O
and
Zng = bpgYo(bY%7) + by J o (bY/%r),
Xng = 6ngYa(b/2r) + dgndn(6*/?7)
where
-}‘—,f—k; k even, | odd
bu=1 2545 kodd,leven
0 k—1leven
and

4

ity keven,lodd

i_k _ kodd,!even

x2_k3
du =1 0 k —leven
%% k=0,10dd
\ —3-,1; k odd, ! = 0.

Here é;; is the Kronecker delta. For r < 1 the solution is

Y= — ; smhﬂ — Fo+ )" Ju(ksr) [basinnb + d, cosnb]. (3.21)
— o n=0

Applying the matching conditions gives an infinite set of coupled linear equations.

They are comprised of two sets of equations for the a,’s and b,’s and two sets of
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equations for the ¢,’s and d,’s. In order to solve these, n and ¢ are truncated at N,
and then the set of equations is solved numerically. We let N = 10, and it can be
seen in the solutions constructed below that the upstream waves are small so that

the upstream boundary condition has been satisfied.

The quasi-geostrophic solution is proportional to the first odd lee wave func-

tion and for » > 1 can be written

. 2h h
Y =rsinf + 6bl;’zJl(bl/z)s(bl/z)r,t,v) — bl"/z { S(b'/%r, 0)J1(b1/2)y0(bl/2r)}
and for r < 1
: h 1
Y =rsinf + bl/le(bl/z)S(b‘/zr ) — bl"/z { Ya(6'/2) (%) + bm}
where
J2n-1(§) cos((2n — 1)n)
5(&m) Z 2n — 1

(McCartney, 1975). The circulation for the quasi-geostrophic solution is
= 2w—J1(b1/2)Y(b1/2)
reducing to the f-plane result as b approaches zero.

The drag from the quasi-geostrophic solution is given by
J2(b1/2)
2
=27 ( ) i
The resulting drag has zeros in it, associated with resonant solutions as discussed by
McCartney (1975). The envelope of the decay of the drag with increasing b decreases
algebraically as 1/b. As shown by Johnson (1977), the wave drag associated with
eastward flow over topography depends critically on the form of the topography.
Johnson (1977) shows that for smooth topography, h = (1 + r2)~3/2 the wave drag
falls off exponentially like b!/2e=%"". Asymptotically, the drag for flow over Gaussian
topography falls off like '/2e~>. The abrupt topography discussed here is quite special
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because of the resonant solutions which result in the slow fall off of the drag with
b, but the qualitative comparisons between the shallow water and quasi-geostrophic

theory should still be valid for similar solutions of flow over smooth topography.

We apply the same restrictions on the parameters (eb < 1) as we did for the
westward for cases. When ¢ is large, the solutions look quite similar to the westward
flowing solutions (Figure 3.8). The streamlines move apart over the topography and
the flow is partially blocked. There are very small amplitude waves downstream of
the topography. For moderate b and small ¢, the quasi-geostrophic solution and the
shallow water solution look quite similar, with slightly larger amplitude Rossby waves
and spreading of streamlines over the topography in the finite depth solution (Figure
3.9).

In the limit of large b, the shallow water and quasi—geostrophic solutions result
in very different streamline patterns, as they did for westward flow (Figure 3.10). In
this case, we cannot construct a boundary layer solution. Initially, parcels follow lines
of constant background vorticity. This causes southward deflection of the streamlines.
Because the deflection is larger in the finite depth solution due to the finite height
of the topography, the stationary Rossby waves generated over the topography have
larger amplitude as they compensate for the larger amount of relative vorticity gener-
ated. In the finite depth solution, both the even and the odd Rossby waves are forced,
unlike the quasi—geostrophic solution. For the values of the parameters shown, the
downstream waves have closed streamlines. These waves may not be stable, and
would certainly be modified by frictional effects, but the solutions serve to show that

large amplitude Rossby waves could be generated.

Remembering that the circulation is proportional to 1/¢ we can directly com-
pare the quasi-geostrophic solutions and the finite depth solutions (Figure 3.11). The
magnitude of the circulation oscillates with a wavelength of approximately 6'/2(1—h,),

the wave number of the variations over the topography. The circulation actually re-
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Figure 3.8: Stream function for eastward flow when b = 0.3, o = 0.6 and ¢ = 2. (a)
Finite depth solution (b) quasi-geostrophic solution. These parameters are the same
as shown in Figure 3.2 for westward flow.
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Figure 3.9: Stream function for eastward flow when b =3, hqg = 0.6 and ¢ = 0.2. (a)
Finite depth solution, (b) quasi-geostrophic solution. These parameters are the same
as shown in Figure 3.1 for westward flow.
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Figure 3.10: Stream function for eastward flow when b = 20, hy = 0.6 and ¢ = 0.5.
(a) Finite depth solution, (b) quasi-geostrophic solution. The stationary Rossby
waves present upstream of the topography come from the error associated with the
truncation of the solution at finite /V and are due to the fact that the downstream
stationary Rossby waves have such large amplitude.
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verses sign due to local reversals of direction in the wave pattern as seen dramatically
in Figure 3.10. It should be noted that it is very easy for closed streamlines to form
in the wave field; this tendency calls into the question the validity of this form of

steady solutions and also whether steady solutions can exist.

The blocking efficiency becomes negative for large b as it did for the westward
flow (Figure 3.12). This results once again from the tendency for the streamlines to
follow lines of constant planetary vorticity when b is large so that the flow is enhanced
over the topography. However, this tendency does not increase indefinitely, because
eventually the wave field has large enough amplitude and small enough wavelength to
dramatically affect the flow locally over the topography (Figure 3.10). The blocking

returns to zero when b becomes large enough.

The lift increases with increasing hg, and in all cases the lift for eastward flow on
the f-plane is greater than the lift on the f-plane when b = 0 (Figure 3.13). This effect
was also seen for westward flow where the tendency for the odd portion of the wave
function to dominate as b increases causes larger values of the lift. The downstream
stationary Rossby waves increase the lift, L, as a results of the rectification of the

stream function associated with the quadratic terms in the pressure.

The drag is composed of two parts, one owing to the part of P, proportional
to 1/€ and the other owing to the part proportional to € (Figure 3.14). The first part
of the drag has size comparable to the quasi-geostrophic drag, while the other part
increases dramatically for increasing ho. The second component does not contribute
when ¢ — 0, but even for relatively small Rossby numbers (for instance ¢ = 0.1) it
can be very large, due to the large amplitude Rossby waves generated downstream
when both b and h are large. Thus drag calculated from the finite depth model has a
very different character than that from the quasi-geostrophic model. The part of the

pressure that contributes to the drag, P., has quadratic dependence on the stream
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Figure 3.11: Circulation I, for eastward flow for the quasi-geostrophic solution (lower
solid line), and for the shallow water solution for hg of 0.2 (dotted—dashed line), 0.4
(dotted line), 0.6 (dotted line), and 0.8 (lower solid line). It is shown in units of

ho?l'/f.
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Figure 3.12: Blocking efficiency T for eastward flow for the shallow water solution
for hg of 0.2 (dashed line), 0.4 (dotted line), 0.6 (dotted—dashed line), and 0.8 (solid
line). Blocking efficiency for the quasi-geostrophic solution is 0.
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Figure 3.13: Lift L for eastward flow for the quasi-geostrophic solution (lower solid
line), and for the shallow water solution for hq of 0.2 (dotted~dashed line), 0.4 (dotted
line), 0.6 (dotted line), and 0.8 (solid line). It is shown in units of 7 so that the quasi-
geostrophic lift has magnitude 1.
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function, and the downstream wave field is rectified in this calculation. The second

component (depending on ¢) is large because it depends on ,.

3.3.6 Summary: barotropic flow over finite topography

For flow over finite topography in a barotropic fluid, quasi-geostrophic theory tends
to underestimate the strength of the flow over the topography resulting in an under-
estimate of the circulation, lift, and drag of the flow. In addition, it causes the critical
Rossby number above which closed streamlines cannot exist above the topography to

be larger than found in the finite depth model.

The most dramatic differences between the two solutions can be seen at large
values of b. For either westward or eastward flow, the blocking becomes negative,
and the amount of fluid going over the topography is enhanced relative to the back-
ground flow. In this parameter regime, the fluid parcels approximately follow lines of
constant background vorticity so that the streamlines are deflected to the south over
the topography in both the quasi-geostrophic and finite depth models. However, the

southward deflection is larger in the finite depth model.

The other difference is that due to the quadratic terms in the pressure. The
forces on the topography are underestimated by quasi-geostrophic theory. In partic-
ular for eastward flow, the Rossby wave drag can potentially be much larger than the

quasi-geostrophic estimate, particularly when both b and h, are large.

A closing word on parameter values helps to put the above results in perspec-
tive. In the ocean, topographic features are often quite tall, so the dependence on h,
is important. However, tall seamounts generally have rather sma'l horizontal extent
(for example, 50 to 100 km). This results in a value of b which is order one. The

solutions with large b discussed may be relevant for flow over the largest scales of
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Figure 3.14: Drag D for eastward flow. (a) The portion proportional to 1/¢ for the
quasi-geostrophic solution (dotted line), ho of 0.2 (solid line), 0.4 (dashed line), 0.6
(dotted-dashed line), (b) the portion proportional to € for ko of 0.2 (solid line), 0.4
dashed line. The quasi-geostrophic contribution is zero. For both plots, the drag is
in units of hy.
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topography which interacts with the slow abyssal flow (e.g. Straub and Rhines, 1990,
and Rhines, 1989), and it is in this regime for which we find the most differences be-
tween the quasi-geostrophic and finite depth solutions. In a quasi-geostrophic model
of the circumpolar current, Treguier and McWilliams (1990) show that the largest
scales of topography contribute most to the drag on the current. Qur study suggests

that this effect may be even more dramatic when non quasi-geostrophic effects are

allowed.
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3.4 Flow over finite topography in a two—layer model

In Section 3.3 we explored what happens when the topographic feature is of finite
height in a barotropic fluid. The solution is comparable to the quasi-geostrophic
solution as long as both the topography and the flow are small enough. As soon as
the topography becomes large, the quasi-geostrophic solution is inaccurate due both
to the horizontal divergence of the flow allowed by the shallow water solution, and
to the finite Rossby number effects on the pressure. An indication of this inaccuracy
is given by the comparison of integral properties of the flow between the finite depth
solution and the quasi-—geostrophic solution. The next step in understanding flow

over finite topography in the ocean is to include stratification.

Often, seamounts fill a large fraction of the water column, and one would like
to know the effect of this on oceanic flow in a more realistic model. Unfortunately
it is not possible to do a simple model with an analytic solution similar to the one
described in Section 3.3 using the shallow water equations for either a layered fluid or
a continuously stratified fluid. In a two layer fluid, the interface height non linearly
couples the flow, and the flow is no longer simply given by the solution of linear
partial differential equations. This complication also manifests itself in continuously
stratified models. The problem of flow impinging on topography of finite height in a
continuously stratified fluid has been solved numerically using the primitive equations;
however the steady solution has only been found on the f-plane and the solution is
found by allowing a time~dependent model to reach steady state (Chapman, personal
communication). Needless to say this process is intensive in computer resources. We
would like to develop a dynamically simple theory which will help in the study of
primitive equation models by giving simple predictions as to what happens when a

stratified fluid interacts with finite topography.
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The quasi-geostrophic steady solutions that have been studied to the present
have concentrated on flow in which the lower boundary is an isopycnal surface, so
that isopycnals do not intersect the topography and thus have limited applicability
for oceanic flows over seamounts which reach nearly to the surface (i.e. Buzzi and
Speranza, 1979, Schar and Davies, 1988). Here, we consider a fluid consisting of two
layers in which the topography goes all of the way through the lower layer and extends
only slightly into the upper layer so that the quasi~geostrophic approximation is valid.
The problem can be solved analytically using the same mathematics as described in
Section 3.3. In this way we are able to describe flow over finite topography in a

stratified fluid analytically.

In order to make use of this model, we would like to make a connection between
a model with this geometry and one with more realistic geometry such as smooth
topography and continuous stratification so that comparisons and predictions can
be done with it. Under the quasi-geostrophic approximation, the flow must remain
nearly horizontal. When the flow reaches ar obstacle, depending on the slope of the
obstacle and the stratification, the flow can either go over the obstacle or around
it. Buzzi and Speranza (1979) showed through a dimensional argument that when
ho/€ X 1/S, where S is the Burger number, the flow can go up and over the obstacle,
and the quasi-geostrophic solution can be found by applying the bottom boundary
condition on the vertical velocity. When ho/e 2 1/S the flow must go around instead
of over the obstacle in order to keep the flow horizontal, and the boundary condition at
the topography is applied on the horizontal velocity. Thus, quasi-geostrophic theory
can be applied in these two situations. When the Rossby number is larger such that
the flow goes up the topography, quasi-geostrophic theory will not be adequate for
describing the flow. There is a distinction here between the flow going around the
topography to remain quasi-horizontal, and closed streamlines appearing over the
topography in a stratified fluid which result in the trapping of fluid. In a stratified

model, both things can occur, and they happen at different values of the parameters
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as Schar and Davies (1988) showed. Quasi-geostrophic theory allows a wall with
large enough slope to be approximated by a vertical face, so for a slowly moving fluid

(small Rossby number), our geometry is reasonable.

Buzzi and Speranza (1979) solved for the flow around a vertical disk that
obstructs the flow. This obstacle has a finite vertical cross section, but a small
horizontal cross section. In their continuously stratified model, they show that at a
vertical wall the stream function depends only on the vertical coordinate, and they
choose, somewhat arbitrarily, that the stratification be constant on the wall. This
is equivalent to requiring that the isopycnals are flat at the wall. In our model,
we have finite cross sections both in the vertical and horizontal, extending Buzzi
and Speranza’s (1979) work, and we solve for the flow in the two-layer model. We
must choose the circulation around the obstacle in the lower layer, and this choice is

arbitrary. We choose for this chapter to have no circulation in the lower layer.

Two-layer models can be calibrated according to the real oceanographic strati-
fication (Flierl, 1978), and this calibration depends on what phenomenon is of interest.
It is not clear exactly how the model that we study here would be calibrated, but
we guess that the interface location would approximately correspond to the location
of the node in the first baroclinic mode. A more detailed calibration has not been
done. The model is probably more accurate for a situation in which the stratification
is localized in the vertical and above the region of strong stratification the fluid is
relatively unstratified. A measure of this would be the scale at which motions are
bottom trapped (H, = foL/N) verses the depth of the upper layer. If H, is much
greater than the depth of the upper layer, we would expect that our model would be

relevant.

For this two-layer model, we consider a variety of strengths of the stratification
parameter. The relative layer depth is also an adjustable parameter. We choose

to consider two cases: equal layer depths, so that a comparison can be made to a
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simpler two—layer model, and an upper layer depth equal to 0.2 times the lower layer
depth. This choice is traditionally chosen for the interface height to correspond to
the location of the thermocline in the ocean. There are several places in the ocean
where seamounts penetrate nearly to the surface, where one would like to apply this
model, such as flow of the Kuroshio over the Emperor Seamounts, flow of the Guif
Stream over the New England Seamounts, and flow over isolated guyots that reach

nearly to the surface.

The model is physically consistent as long as two conditions hold. When closed
streamlines occur, the inviscid theory no longer applies on time scales comparable to
the viscous spin up time 7. As shown in Chapter 2 for a one-layer fluid, a new so-
lution can be found such that under the influence of Ekman friction, the fluid within
closed streamlines becomes stagnant. This breakdown criterion tells when we expect
fluid to be trapped over the topography. If the interface goes above the topography,
the solution no longer applies. This breakdown criterion gives an indication of how a
more general stratified model would behave. This is approximately the same as the
breakdown criterion of the continuously stratified quasi-geostrophic models reviewed
earlier in which the breakdown criterion is associated with the application of the bot-
tom boundary condition (Schar and Davies 1988, Buzzi and Speranza 1979, Merkine
and Kalnay-Rivas 1976). In continuously stratified models, the requirement is that

the bottom boundary remains isopycnal.

In the sections that follow, the model formulations are presented. First, we
consider a barotropic incoming flow on the f-plane, then flow on the f-plane with

shear, and finally examples are given of both westward and eastward flow on the

B-plane.
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3.4.1 Model formulation

The formulation of the problem follows closely that of McCartney (1975) for his
solution of two-layer flow over small topography on the S-plane. We use the scaling
that he developed in his paper. The only difference is that we let the upper layer be
indexed as layer 1 and the lower layer as layer 2, opposite to his notation but consistent
with the notation in the rest of this thesis and other more recent work done with the
two layer model. The basic geometry of this model as well as McCartney’s (1975)

model as shown in Figure 1.1.

As McCartney shows, the parameters in this inviscid theory are
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and

Ug = (1 — d)Uuf + dUj,
where U; and U, are the velocities in the upper and lower layer, respectively.

As in Section 3.3 € is the Rossby number, but here using the depth ave aged
root mean square velocity, b is a measure of the importance of 3, the ratio of the long
Rossby wave speed to the background flow speed, ho is a measure of the topographic
height variation in the upper layer, S is a measure of the importance of the stratifi-
cation and is equivalent to the Burger nuiaber for this two-layer model. and d is the

scaled depth of the lower layer. When § is large, th= stratification is strong and the
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two layers are relatively uncoupled; when S is small, the stratification is weak and
the two layers are strongly coupled. Under the quasi-geostrophic approximation, S
is assumed to be order one and the Rossby number is small. In addition, ko is of
order Rossby number. This last requirement allows the dynamics to be internally
consistent so that the layer depth changes only an order Rossby number amount, the

flow remains quasi-horizontal, and the two layers are coupled linearly.

Under the quasi—geostrophic approximation, the two-layer model is governed
by the two-layer potential vorticity equations. The horizontal velocities are scaled by
U, and the horizontal length is scaled by L, the length scale of the topography. The

two-layer equations become

atqn + J(¢n’ Qn) = 0’ (3'22)

where g, indicates the quasi—geostrophic potential vorticity in the n-th layer, where

away from the topography
Y2 — P

q = Vi + by + S04 (3.23)
and
g2 = Vi + by + d"—d"sﬂ. (3.24)
The interface height difference away from its mean depth is given by
n = eu, (3.25)

S

and is an order Rossby number quantity.

In steady state, 3.22 allows a solution such that g, is a function of %, for
n = 1,2. The functional relationship between the potential vorticity and the stream
function in each layer is determined by the upstream conditions. Upstream, ¥, =
—U,y. Thus using 3.23
(b+ =3)

Q= "'_l'};'—"/’h (3.26)
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and likewise using 3.24

b+ u-u;
q: = —(—-——-l-}-——)‘l/)z- (3.27)
2
With uniform flow upstream of the topography in each layer we can let ¢, = —U,y +

¢n. Away from the topography we have from 3.26 and 3.27

U ¢

Vig: - ¢’{ UgdS] T dS

(3.28)

and

U2 ¢2
Tha-95 T T-d5

This is the same set of equations that McCartney (1975) uses to describe steady flow

Vi, — ¢1[ (3.29)

over topography of small (order Rossby number) height.

However, with this geometry, over the topography the fluid obeys a one layer

equation. In general, the governing equation is given by

oqr + J(¥1,1) =0

where
h—d
e(1 - d)°

The same functional relationship as in 3.26 should hold between ¢; and ;. Thus for

= V2, +

r <1 welet
yUlb
Y= ——p—- + ¢
b+ 3(1 [{i)
so that
ho — d
Vié+ ikl = — (3.30)
where ;
.+.
k2 = ——M 3.31
3 Ul ( )

The sign of k2 depends on the direction of the flow. For the cases that we consider
(Uy > U,) for eastward flow and f-plane flow, k2 > 0 indicating a trapped wave

response. However, for westward flow, k2 can have either sign.
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McCartney (1975) considered for simplicity the flow over a right circular cylin-
der whose depth is small compared to the total depth, and is only in the lower layer.
In order to solve the problem, he found an equation for ¥, and required that 1, and
its first three derivatives in r be continuous at r = 1, equivalent to the velocity being
continuous at 7 = 1 in both layers. Here, the requirements are that the velocity must
be continuous in both directions in the upper layer, and the velocity normal to the
cylinder must vanish in the lower layer (¢ =constant at » = 1). However, there is
still an undetermined constant which is chosen by specifying the circulation around
the topography in the lower layer. We choose the circulation to be zero in the lower
layer at » = 1. This last condition makes sense because this solution corresponds to
the steady state solution of an initial value problem whereby the velocity is brought
to the final value from rest. If initially there is no circulation, and if the fluid re-
mains inviscid throughout its evolution, then no circulation develops. This is the
same choice that has been made for the solution to the problem of flow impinging on
an island (White, 1971; and McKee, 1971). The lower layer is coupled to the upper
layer, and so it is not simply the solution that White (1971) and McKee (1971) found.
The circulation around the cylinder is also related to the lift and drag on the cylinder
in the lower layer. When the circulation is zero, there is no lift or drag in the lower

layer.

The solution can be separated into an island component (odd in y) and a topo-
graphic component (even in y). For the problem that McCartney (1975) studied, the
odd portion of the solution is composed of the background flow only. This separation
is similar to what we find for the solution of flow of a barotropic fluid over finite
topography. For the two-layer model, the odd component is forced by the boundary
conditions in the lower layer, while the even component is forced by the topographic
contribution to the potential vorticity anomaly. We are thus capturing in this simple
geometry one of the elements that quasi-geostrophic theory of flow in a stratified

fluid in which the bottom always remains an isopycnal lacks: that the flow over an
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axisymmetric obstacle of finite height is composed of two components with different
symmetry in y, and splitting of the flow around the topography occurs. Buzzi and
Speranza’s (1979) solution of flow impinging on a vertical disk lacks the symmetric

component. We are capturing both components in the solutions that we show below.

For r > 1 the fluid responds much in the way described by McCartney (1975).

The governing equation for the flow in the upper layer is then for r > 1
(V2 +E) (V2 + k) = 0,
where k; and k; are given by

1 1
k2, = _E(N1 + N;) + -2~((N1 — N3)? + 4N5)'/?

where
b U,
M=+ a5
b U,
Np= o b2
=t na-a9s
and
N; = 1 =T?
PTd(1-d)sr
When k? or k2 are negative we define
G =K
and
k2= —k2.

The fundamental length scales of the problem are set by k; ;. When the back-
ground velocity is barotropic and 4 = 0 then the wavenumbers are 0 and T, the
ratio of L to the baroclinic Rossby radius of deformation. McCartney (1975) showed
that depending on the choice of the parameters k? and k2 can either be zero, posi-

tive, or negative. When kZ is negative, the stream function falls off exponentially as
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evanescent Rossby waves or as a trapped baroclinic response; when kZ is positive, a
stationary Rossby wave solution is allowed. Fandry et al. (1983) considered solutions
when the shear is reversed. In this study, we restrict the solutions to the case of larger
velocity in the upper layer than the lower layer. As in Section 3.3.5, we construct
the solution out of lee-wave functions, applying the matching conditions as outlined
above. It should be noted that as the condition for the background flow to be stable
we must have

U, — Uz < bdS.

For some of the cases that we are considering, baroclinic instability of the background

flow is a possibility. In these circumstances the steady solution may not be realizable.

To help understand the solutions we also study critical heights of the problem.
We first note however, that the wave-drag will be similar to the quasi-—geostrophic
model, but the lift calculations will be fundamentally different, since there are anti-
symmetric components of the flow besides the background flow. The lift and drag are
only non-zero in the upper layer due to the requirement that there is no circulation

in the lower layer.

3.4.2 Barotropic flow on the f-plane

The solution when the incoming flow is barotropic, and the topography is relatively

small in horizontal extent so that 3 can be ignored is discussed in this section.

In this case, k,; is zero (the barotropic mode) and k; = T where for » > 1 we

have
Y1 =arlnr + a3 Ko(I'r) + a3sin@/r + a4 Ky(I'r)sin 6 — rsin @ (3.32)
and forr < 1
Y1 = b — ho - d 2 4 byrsiné 3.33)
1 =0 46(1_‘1)7' 2T SIN ( )
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while
Y2 = a;lnr — §a; Ko(F'r) + a3sinb/r — bayK1(I'r)sinf — rsiné (3.34)

where § = H,/H, = (1 — d)/d. Applying the matching conditions we find that

g = %0
2(1 +6)’

. 4.0 Ko(T')
2(1 + 8§)K,(T) + Ko(T')’
- 2K:(T) + Ko(T)
27 2(1+ K, (T) + Ko(T)’
KoT) 1

az

_g(20\) 2
S ALY
and
_ 2(1+ 6)K,(T)
27 21+ 8)K,(T) + Ko(T)
We have defined
fa = (1 - ad)’

which is the magnitude of the potential vorticity anomaly in the upper layer. Notice

that a3 and b, are independent of g,.

When the stratification is moderate, the solution contains both bump-like
components (those independent of ) and island-like components (those proportional
to sin #) (Figure 3.15). The additional angle dependent components result in an
interface which is asymmetric and is higher in the north than in the south, while the
fluid is split by the topography in the lower layer. The asymmetric response of the
interface is consistent with what happens in the primitive equation models (Chapman,
personal communication); however, in this model, the interface near the topography
in the south is depressed, whereas in quasi-geostrophic theory in which the isopycnals
do not intersect the topography, the isopycnals rise over the topography. The interface

is depressed because it is responding to the anticyclonic perturbation in the upper
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layer and no circulation in the lower layer. If we let ¢, = 0 then the interface would
be tilted symmetrically north-south, since all of the radially symmetric terms in
the solution would vanish. The solutions can be compared to McCartney’s (1975)
solution, which contains the bump like components plus the background flow (Figure
3.16). In this case, the interface is raised uniformly over the topography as a radially

symmetric perturbation.

To understand the solutions further, we can calculate the vertical velocity at

the interface which is given in the two-layer model by

d17_

I (W1, %2 — ).

The vertical velocity is shown in Figure 3.17 for our model and for the small topog-
raphy model. The vertical velocity is positive upstream of the obstacle, and negative
downstream as the fluid goes up and over the obstacle. There is an asymmetric

response (north-south asymmetry) in the finite depth model.

When § = 0.2 the solution looks different. Since the lower layer is deeper, the
flow more nearly looks like the solution of irrotational flow about a cylinder. There

are more closed streamlines in the upper layer (Figure 3.18).

From the solution given by 3.32, 3.33, and 3.34, two critical heights of the
problem can be found. First we find the topographic height such that the maximum

of the interface height 7 from 3.25 and the topographic height are equal. This is given

b
’ Ry _ 42K, (T)26T
€ (2V8K,(T) + Ko(T))(2K1(T)(1 4 8) + Ko(T)T)’

The maximum interface height always occurs at § = v/2 (in the north for eastward

(3.35)

flow) and r = 1 for eastward flow on the f-plane. For a physically consistent solution
we must require that hy be greater than h,. The behavior of the solution can be
understood by looking at A, as a function of stratification. When the stratification is

large (I small), h, approaches zero. In this limit, the interface is stiff and its vertical
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(b)

(c)

Figure 3.15: Solution for flow over finite topography with no upstream vertical shear
when hg = 1, S = 1 (I = 2), and d = 0.5 (§ = 1). (a) Upper layer streamlines,
(b) lower layer streamlines, and (c) interface height. In this and all the subsequent
streamline pictures, the contour interval is 0.4 for the streamlines and 0.1 for the
interface height and the flow is from the left to the right.
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(b)

(c)

Figure 3.16: Solution for flow over small topography with no upstream vertical shear
using the same parameters as Figure 3.15. (a) Upper layer streamlines, (b) lower
layer streamlines, and (c) interface height.
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(a)

(b)

Figure 3.17: Vertical velocity at the interface in the upper layer using the same
parameters as Figure 3.15. (a) Finite depth model, (b) small topography model.
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Figure 3.18: Solution for flow over finite topography with no upstream vertical shear

when hg =1, 5 =1 (I' = 2), and d = 0.833 (§ = 0.2). (a) Upper layer streamlines,
(b) lower layer streamlines, and (c) interface height.
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deflection is limited. When the stratification is weak (I' large), the fluid responds
barotropically and k,/e approaches 46/(1 + 2v/8). The critical height is a monotoni-
cally increasing function of stratification, and it is in general larger for smaller values
of d (Figure 3.19). We see here that the in the limit of weak stratification h, ap-
proaches a finite number which depends on §, or equivalently the upper layer depth.
This is consistent with the notion that the validity of the model depends critically on
how deep the upper layer is relative to the bottom trapping scale in the upper layer.
When the solution violates the critierion, we must use a different model to describe

the flow.

There is a critical topographic heighi above which closed streamlines in the
upper layer occur. This critical height gives an indication at what point trapped fluid
is expected over the topography and closed streamlines form. This can be found from
the solution 3.32, 3.33 and 3.34, and is given by

herit 4(1 - d)

e  (FdKDK®D) (3.36)

For strong stratification, h..;, approaches 2¢(1 — d). This is the same as the critical
height for a one-layer fluid with relative depth (1 — d). When the stratification is
strong, the two layers are uncoupled, and the upper layer acts as a one layer fluid
independent of the lower layer; the interface is effectively a rigid bottom. When the
stratification is weak, the critical height goes to zero; the two layers are strongly
coupled, and the lower layer fluid is required to go around the topography. The fluid
is responding barotropically, and some of the upper layer also goes around rather

than over the topography, which results in a lower critical height.

We can compare the k. to the the critical height above which closed stream-
lines occur in the two-layer model for flow over small topography. We find the critical
height in the lower layer using McCartney’s (1975) solution and it is given by

h,2 d

e T+ (1 =-dLT)K(T)
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Figure 3.19: Critical height h, /e as a function of T', for d = 0.25 (solid line), d = 0.5
(dashed line), and d = 0.75 (dotted line).
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We find the critical height in the upper layer h,; numerically.

For strong stratification, h,, goes to 2ed which is the same as a one layer flow
with depth d, and the interface is effectively a rigid lid. When the stratification is
weak, h,, approaches 2¢, which is the one-layer critical height with depth 1. Thus h,;
decreases with decreasing stratification, opposite to the behavior of h..;;. However,
the dependence of h,; on ['is in the same sense as h.,;;. When I is small, h,; becomes
infinite. The upper layer flow is unperturbed by the topography since the two-layers
are uncoupled and closed streamlines never occur. However, when the stratitication is
weak, then h,; goes to 2¢, the same as h,, since the fluid is responding barotropically.
A comparison of the critical heights as a function of the stratification is done for the
two models when § = 1 so that the symmetry between the two models can be seen

(Figure 3.20).

The dependence of h,;; of the finite depth model on the relative layer depths is
shown in Figures 3.19 and 3.21, keeping the baroclinic Rossby radius of deformation
(I'-!) constant. Closed streamlines are more likely to form when d is large than when
d is small. This is consistent with the fact that not only does the lower layer depth
increase with increasing d, but the total topographic height increases with increasing
d. heit is minimal when d = 1. In this limit, the bump becomes very tall since the

lower layer depth is maximum, and more trapped fluid results.

Huppert and Bryan (1976) calculated a similar critical height in a point vortex
model in which they predicted when the fluid that originated over the topography
in an initial value problem would remain trapped over the topography and when it
would be shed downstream. In their calculation, as the stratification increases, the
fluid which originates over the topography is less likely to be trapped. Since their
model is a quasi-geostrophic model, their critical height is similar to the critical height

h,2 in McCartney’s (1975) model.
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Figure 3.20: Critical heights when § = 1 for both the finite depth topography model
and the small topography model. The solid line is h..;;/€, the critical height for closed
streamlines to form in the finite depth model. The dashed line is k,;/¢ the critical
height for closed streamlines to form in the small topography model in the lower layer.
The dotted-dashed line is h,; /€ the critical height for closed streamlines to form in
the upper layer of the small topography model.
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Figure 3.21: Critical height h..;./€ as a function of d for I' = 1 (solid line), I' = 0.5
(dashed line), and T' = 0.25 (dotted line).
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We have shown in Figures 3.19 and 3.20 that the two critical heights h, and
herie are distinct. This shows that the point at which the model geometry breaks
down and fluid parcels go over instead of around the topography in the lower layer is
different than the point at which closed streamlines occur. Thus, in a stratified fluid,

fluid parcels can go around the topography without a Taylor column being formed.

3.4.3 Flow on the f-plane with vertical shear

The next most complicated situation to consider is flow on the f-plane with vertical
shear. This model provides the first, although simplified, look at the effect of back-
ground shear on flow over finite topography. In this case k; = 0 and k2 = —«2 =

~I'?/U,U,. Notice however that k3 = (U, — U;)/S(1 — d)U; indicating a wave-like

solution when U; > U,. Then the solution can be easily written down. For r > 1 we

have

in 4
Y1 = a1lnr + a2 Kp(kaor) + a3 i + a3Ki(k,r)sin 8 — rsin 0,

r

and
in 8

Y2 = ajlnr — §a, Ko(kar) + a35m — 8a4K,(kar)sin 8 — 7sin 6.

r

Forr <1

ho — d .
P = m + b1 Jo(k3r) + baJ1(ksr) sin 6.

The stationary waves over the topography come from the effective potential vorticity
gradient across streamlines supported by the background vertical shear which main-
tains a potential vorticity gradient in the exterior. The response in the exterior does
not support stationary waves; it is trapped to the topography as evenescent waves
since U; and U, have the same sign. The solution over the topography must match
to the exterior solution, but only barotropic motions are allowed, and a stationary

wave-like solution is forced on the background potential vorticity gradient. Because
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of the wave like character over the topography, the flow is possibly barotropically

unstable (e.g. Lorenz, 1972).

To further simplify the problem we look at the limit of the largest vertical shear
allowed in the model; no flow in the lower layer. For a consistent solution %, = 0
everywhere. In this case, k3 = 1/S/(1 ~ d) and U; = /1/(1 — d). The exterior
solution 1s written

Y, =a;lnr + azsinb/r — Uyrsin§. (3.37)

The coefficients are found by matching across »r = 1 and are given by

_ Jl(k3)qa
ksJo(ks)’

ksJo(ks) — 2J1(ks)
k3Jo(k3) ’
9a

by = it

k3Jo(ks)

a, =

a3=U1

and

20,

by = -t

kSJO(k:!)

.

The critical heights can be found as for the barotropic problem. The critical

height for closed streamlines to appear is given by

horit 2(1 - U,
e = Ti(ka)kadalka) — Tr(Ra)] (3.38)

At zeros of J; the critical height becomes infinite. At this point, a resonant solution is
valid, similar to the one described by McCartney (1975) for eastward flow on the 3-
plane. The resonant solution may be an artifact of the abrupt topography, although

the wave-like character is not.

The maximum value of 7 is independent of the topographic height A¢, depend-

ing on the background shear and stratification and is

20U, J1(k3)
ksJo(k3)S

nmaz .

€

. (3.39)
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Once again the resonance can be seen. When kj is a zero of J; then this critical height
goes to zero. When it is a zero of Jg, the critical height becomes infinite. When the
critical height for closed streamlines (hei) is a maximum, the maximum value of 7

1S zero.

This same kind of behavior can be seen for the more general case of flow
with shear. We consider only the oceanographic relevant parameter range where
[Ui| > |Uz]. Thus, 1 < UZ < 1/(1 — d). Figure 3.22 shows h, as a function of U,
for a given value of d and various values of I'. When I is small, the critical height
becomes infinite for some value of Uj, so it is not shown. In general, the critical height
decreases with increasing I' as was seen in the barotropic problem. The critical height
increases with increasing shear. The interface tends to be high in the north as in the
barotropic problem. The addition of vertical shear adds additional north-south tilt
to the interface from the background flow. What results is that the flow with vertical

shear is more likely to go over the topography than flow without (Figure 3.23).

3.4.4 Westward flow on the S-plane

As outlined by McCartney (1975), when the background velocity in both layers is
to the west, both of the Rossby waves are evanescent, and B-plane solutions are
qualitatively similar to the f-plane solution. The solution is trapped closer to the
topography, just as in the one-layer solution on the S-plane for westward flow dis-
cussed in Chapter 2. The flow with a finite value of b is shown (Figure 3.24) for
the same value of the parameters as in Figure 3.15. Note that for barotropic flow,
the response over the topography is not wave-like, since the background potential
vorticity gradient is simply By. Also, less fluid is trapped over the topography than

flow on the f-plane.
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Figure 3.22: Critical height k., as a function of U, for flow with shear for I' = 4 (solid
line) , I' = 2 (dashed line), T' = 1 (dotted line), and I' = 0.5 (dotted~dashed line).
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Figure 3.23: Solution for flow over finite topography with upstreau: vertical shear,
Uy = 1.2, when hg =1, § = 1 and d = 0.5. (a) Upper layer streamlines, (b) lower
layer streamlines, and (c) interface height.
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Figure 3.24: Solution for westward flow over finite topography on the 3-plane when
ho =1, 5 =1and d = 0.5 and b = 0.5. (a) Upper layer streamlines, (b) lower layer
streamlines, and (c) interface height. The flow is from the right to the left.
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The difference in the two solutions of flow over small topography and finite
topography is once again given by the difference in the symmetries of the problem.
In particular, for flow over small topography, the deviation from the background flow
tends to be isolated on the northern portion of the topography for moderate values of
b, whereas for finite topography this effect is moderated by the coupling to the lower
layer in which the flow is forced to go around the topography. The effect of 3 is to
require larger topography for closed streamlines to form, as was true in the one layer
model discussed in Section 3.3. Because the effect of the topography is moderated by
[, it takes more coupling between the layers to make the interface go over instead of

into the topography.

3.4.5 Eastward flow on the S-plane

McCartney (1975) showed that depending on the relative velocity of the flow in the
upper and in the lower layers there can exist either two evanescent waves, one evanes-
cent wave and one radiating wave, or two radiating waves. Because we have already
discussed the effects of shear, we concentrate on barotropic eastward flow. The so-
lution in which there is one radiating and one evanescent wave is calculated, which
can be compared with the solutions found by McCartney (1975) for ow over small
topography. The flow in the upper layer actually looks similar to the solution cal-
culated for the flow in shallow water; the symmetry requires both symmetric and
asymmetric stationary waves to be formed which are forced by the application of the
boundary conditions in the lower layer (Figure 3.25). More fluid is trapped over the

topography than in the westward flowing solution.

There are still situations when the waves resonate at the zeros of the appro-
priate Bessel functions. These will not be discussed further, but the reader is referred

to McCartney (1975) for discussion of the resonant solution in one layer.

129



R
(a)
- T —
. S ) e
__ \ K S—
- B I e
(b)
- = e
i ' i
A i
N ! ;
E

(c)
Figure 3.25: Solution for eastward flow over finite topography on the 3-plane using
the same parameters as Figure 3.24. (a) Upper layer streamlines, (b) lower layer

streamlines, and (c) interface height. The flow is from the left to the right.
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3.4.6 Summary: flow over finite topography in a two-layer

model

We have developed a model in which we are able to study flow in a two layer fluid
when the interface intersects a boundary. In particular, under the quasi-geostrophic
approximation the steady non-linear problem reduces'to a linear set of partial dif-
ferential equations since the interface displacement is simply proportional to the dif-
ference between the upper layer and lower layer stream functions. Since the layer
depths are constant within an order Rossby number amount, the relative simplicity
of the resulting system allows the combined effects of stratification and flow over finite

topography to be considered in detail.

We calculated two types of critical heights from this model. The critical height
above which closed streamline form (h.i¢) was calculated. Above this height, fluid is
trapped over the topography. More fluid is trapped within closed streamlines when
the stratification is weak than when it is strong. When closed streamlines form, the
solutions found are valid for time scales short compared to the spin up time r. We also
calculated a critical height below which the interface is higher than the topography
and the model is no longer physically consistent. This critical height is large when

the stratification is weak.

The limit that the topography must be taller than the interface height (k,)
is interesting because past solutions of quasi-geostrophic flow in a stratified fluid
over finite topography have broken down as soon as the isopycnals intersected the
topography. The model presented in this chapter breaks down when the isopycnal no
longer intersects the topography; therefore we have extended our understanding of
stratified flow over finite topography by considering a new physical regime. We show
that as the stratification decreases, fluid tends to go more easily over the topography,

the same result as Schar and Davies (1988). The model also predicts that the interface
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is depressed on the southern portion of the topography, instead of uniformly raised
over the topography as traditional quasi-geostrophic models predict. There is an
anticyclonic perturbation in the upper layer which coupled with the requirement that
there is no circulation in the lower layer causes the interface to be low near the
topography; the north-south asymmetry is due to the change in symmetry of the
solution resulting from application of the boundary conditions in the lower layer.
Because of the simplicity of this model relative to the continuously stratified models,
the effects of vertical shear in the background flow as well as the effects of 3 can be

seen. The interface goes more easily over the topography as the shear is increased.

Although we do not expect to be able to make detailed predictions from this
two-layer model, it may help in the interpretation of primitive equation models of
stratified flow over topography. Since the model is quasi-geostrophic, it does require
that the flow speed be quite small for the solutions to be relevant. Most importantly,
we have shown how a quasi-geostrophic model in which the boundary conditions
at the topography are applied on the horizontal velocity is fundamentally different
than a model in which the boundary condition is applied on the vertical velocity.
Quasi-geostrophic theory is equally valid for this model since the flow remains quasi-
horizontal. The solutions are more relevant than that found by Buzzi and Speranza
(1979) where they considered an obstacle with finite vertical cross section, but small
horizontal cross section. They also apply an arbitrary condition on the vertical struc-
ture of the stream function at the wall. In this model, we combine the effects by

considering an obstacle with both finite vertical and horizontal cross sections.

There is one issue which has not been resolved; we showed that in the island
limit, the barotropic finite depth model has finite circulation around the topography,
but we require that the flow in the lower layer of the two-layer model has no circu-
lation. There are several ways to try and resolve this difference. First, friction can

be invoked to argue that in the barotropic model, the circulation would be dissipated
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given enough time. A connection however, would have to be made to solutions of
the form discussed in Chapter 2. In the limit of finite topography, Ingersoll’s (1969)
solution has finite circulation required because the velocity vanishes pointwise on the
boundary of the Taylor column which is slightly inside the edge of the topography
in the limit that it becomes tall. But there is a strong shear layer from the small
crescent of fluid forced onto the topography and acquiring strong anticyclonic vor-
ticity. Thus there is finite negative circulation. This result may be different in a
non-quasi-geostrophic model. In the presence of bottom friction, we do not expect
that the tangential velocity should vanish at the boundary of the topography in the
two-layer model. We can also consider the problem as the steady state of an initial
value problem in which there is no circulation initially and the flow develups inviscidly
so that no circulation is ever induced (as long as the lower layer does not overflow the
topography). In the next chapter, we show an example of the initial value problem
in the finite depth barotropic model in which all of the fluid which originated over
the topography remains trapped near the topography. This suggests that when the
topography is quite tall in the finite depth model, no circulation would be induced in

the inviscid initial value problem.

The consequence of the requirement that the circulation be zero in the lower
layer in the two-layer model is that the displacement of the interface tends to be
negative near the topography. If the circulation were non-zero in the lower layer,
then the interface deflection would be different and given strong enough circulation
in the lower layer, the interface deflection could change sign. In continuously stratified
primitive equation models, isopycnals tend to rise near the topography. This discrep-
ancy could be because in our model the density change is limited to one place in
the vertical, because the flow remains nearly horizontal due to the quasi-geostrophic
requirement or because the topography is a right circular cylinder and has vertical
faces. In a primitive equation model over smoothly varying topography, vorticity is

generated near the topography through vortex stretching whenever fluid parcels move
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up the slope. Thus,in a more realistic model, there is probably net a lower layer in
which the circulation is exactly zero. We maintain that our choice of circulation is
the most physical choice to make for understanding flow over finite topography in the

simple model that we constructed here.

Both of the models described in this chapter are more relevant to the ocean
than the atmosphere because the topography considered is tall and can be approxi-
mated by a fluid with a rigid lid. In the ocean however, the tallest seamounts do not
have very large horizontal extent so in general we expect that the effect of 3 would
be somewhat limited. The second model of flow over finite topography in a two-layer
fluid is limited by the restrictive geometry. We can think of this just as a first step
in understanding of flow over finite topography in a stratified fluid. Because the size
of the topography and the relative layer depths are directly related, the most general

situations cannot be considered here.
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Chapter 4

Time dependent solutions

4.1 Introduction and background

Although steady solutions are useful for isolating dynamical processes at work in the
ocean, oceanic flow has a large time-dependent component especially at the synoptic
scale, The models described in the previous chapters have shown some solutions of
flow over topography which has reached a steady state. In this chapter we explore
several time-dependent models of flow over isolated topography on the f-plane by
considering the start up problem of flow impinging on topography and looking at
the generation of eddies through the movement of fluid on and off the topography.
Circulation is generated in the eddies by topographic stretching. We consider only
flow on the f-plane. In Chapter 3 we considered situations in which the S-effect is
important. Here we take the approach of considering the simplest flow situation by
only considering solutions on the f-plane. By doing this, we are isolating the process
of generation of vorticity through vortex stretching, and ignore the effect of planetary
potential vorticity gradients. If we were to include the 3 effect, Rossby waves could be
generated at the topography, and the shed eddy could be influenced by the radiation
of Rossby waves (Flierl, 1984).
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By restricting ourselves to flow on the f-plane, we can use the method of contour
dynamics. We focus on a new parameter regime for simple time-dependent numerical
models, flow over finite topography and in the process develop a modification to
contour dynamics so that the matching conditions at the boundary of the topography
can be handled. As for the steady models that are discussed in Chapter 3, there are
order one differences between traditional quasi-geostrophic models and models of flow

over finite topography.

A hierarchy of time-dependent models on the f-plane is considered. First we
review and extend the work of Kozlov (1983), who also used thc method of con-
tour dynamics to model time-dependent flow in one layer over a quasi-geostrophic
bump. Then, flow over topography of finite height in a barotropic fluid correspond-
ing to the steady solution found in Section 3.3 is studied. We extend Kozlov’s model
to include the effects of stratification by considering a quasi-geostrophic bump in a
two-layer fluid, corresponding to McCartney’s (1975) steady solution. Finally, quasi-
geostrophic flow in two-layers over topography of finite height is modeled, correspond-
ing to the geometry used in Section 3.4. As an introduction to the four models, a
side view of each model is shown in Figure 1.1. The geometry and numerical tech-
nique used in these models is simple and efficient; a wide range of parameters can be
considered at relatively little computational cost. Although these are certainly not
the most complete models to date, because we have restricted ourselves to the simple
situation of flow on the f-plane with no vertical shear in the background flow, the
dynamical processes at work in the models are relatively transparent. In the process
of applying contour dynamics to the finite depth models, the method is modified such

that we extend the range of problems that can be considered with contour dynamics.

Modeling studies of time-dependent motions of flow over topography have
been limited primarily to flow over low features. The first such study of eddy shed-

ding consisted of the modeling of flow over a small bump (400 m) in a continuously
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stratified ocean using the fully non-linear primitive equations (Huppert and Bryan,
1976). Despite the relative complexity of the model, they observed that the flow
tended to be in one of two configurations. When the flow is strong enough, a cyclonic
warm core eddy is shed downstream of the topography. When the flow is weaker, the
eddy remains trapped near the topography. This model included a horizontal eddy
viscosity coefficient, and was donbly periodic, so that it could only be run until the
shed eddy came back into the domain. An idealized point vortex model suggested
when the eddy would be shed and when it would remain trapped and what the path
of the shed eddy would be.

James (1980) considered the simpler problem of barotropic quasi-geostrophic
flow over an axisymmetric bump using a finite difference model. He showed the
time-dependent effects on topographic drag, and found the steady state solution by
solving the initial value problem numerically. This simpler model demonstrated the
qualitative nature of the flow seen in the more complicated model of Huppert and
Bryan (1976). James (1980) found that the drag was initially larger when the fluid
which originated over the topography is moved partially off the topography, and has a
transient response that oscillates with time. The transient response period increases
with decreasing friction. When the eddy is partially trapped, he observed that a
patch of positive vorticity spirals onto the hill, and successive pieces of it break away
and then coalesce back into the main patch of positive vorticity. Because of the
finite difference nature of his model, friction is always important; the model is not
numerically stable when the friction is zero. The drag and lift are of similar magnitude

during the transient regime.

Verron and LeProvost (1985) also studied the quasi-geostrophic equations,
but included the effect of 3. They observed the two regimes that Huppert and Bryan
(1976) described: eddy shedding and eddy trapping. Several simulations of flow on

the f-plane were made. Westward flow on the S-plane looks quite similar to flow on
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the f-plane. When the flow is eastward, Rossby waves are generated downstream of
the obstacle, changing the character of the flow. The simulations are performed in
a channel, and very quickly the Rossby waves are affected by the walls to the north
and south. Verron (1986) considered time-dependent incident flow over topography.
In this case, oscillatory incident flow is applied, and through the action of friction,

successive anticyclonic eddies are shed off of the topography.

The models described above have three things in common. First, they were
all performed in a confined or periodic domain. This restricts the studies to times
short enough such that the shed eddy does not return into the domain from upstream,
and requires that the flow is not effected by the boundary domains. Second, they all
modeled flow over small topography. Finally, friction, whether numerical or otherwise,
plays an important role in the dynamics of the flow. In order to explore the effect
of all these limitations, we use a contour dynamics model that is performed in an
infinite domain and is inviscid, and modify the method so that some aspects of flow
over finite topography can be addressed. We hope that the simple (and hence easily
understood) models presented in this chapter will help with the interpretation of the

next generation of models as well as observations of the ocean.

4.2 Flow in one layer over small topography

The method of contour dynamics is well suited for use in the study of the eddy
shedding process. It has two advantages over conventional models. First, it is inviscid,
and second, the flow is found over an infinite domain so that if the eddy is shed
downstream, it does not reflect off either the boundary of the domain or return to the
domain through the effects of periodic boundary conditions. The drawback is that we
are restricted to the study of flow over topography that is piecewise constant. Before

showing how contour dynamics can be used in the study of flow over topography, we
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first describe the technique in general. This technique has been used previously in

the study of vortex dynamics ( Polvani, 1988; and Zabusky et. al., 1979).

4.2.1 Numerical method

In a barotropic, two dimensional fluid, the vorticity is advected by the stream function.
The evolution of the fluid can be described by the evolution of the vorticity which is

governed by
EAVAL
ot

If the vorticity V23 is known everywhere and the boundary conditions are known,

+J(v,V¥) = 0. (4.1)

we can calculate the stream function using a Green’s function,

P(z,y) = //q(f,n)G(z,z',y,y')d:c'dy' + boundary contributions, (4.2)

where ¢ = V2. For Laplace’s equation in a domain with no boundaries, the Green’s

function takes the simple form
Voo 1
G(z,z',y,¥') = — In R, (4.3)
27

where R = [(z — z')? + (y — ¥')?)]'/%. We consider the problem where the vorticity ¢
is piecewise constant so that it can be taken out of the integral. In order to calculate
the velocity at any point, we differentiate 4.2 with respect to z and y, invoke the

symmetry of the Green’s function, and use Green’s theorem to obtain

(u,0) = (=0,6,0.9) = ¢ §,_G(R)(ds',dy). (4.4)

The velocity at any point is found by simply doing a contour integral. In order to
find the evolution of the flow field, the evolution of 3D must be known, and it can

be found by calculating the velocity on dD.

The advantage of this method is that it reduces the problem of solving for

the non-linear evolution of the field to that of evaluating 4.4 at each time step.
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Once the velocity on 0D is known, then it can be stepped forward in time to find
the new location of the contour. The implementation of this technique used in this
thesis is described in Polvani (1988). At each time step, the boundary of the region
of constant relative vorticity is stepped forward via Runge Kutta integration. The
Green’s function is singular on the contour, but the singularity can be handled by
using the method Polvani (1988) outlines in his Appendix B. This method has been
used throughout this chapter for all of the contour integrals. The basic contour

dynamics computer code used in this chapter was developed by Meacham (1990).

As the contour deforms with time, the distances between the points on the
contour change, and an adjustment in the spacing of the points on the contour must
be made to accurately carry the calculation forward in time. For the calculations here
we applied a point adjustment scheme developed by Meacham (1990). The points are
redistributed according to the local rate of curvature. In addition points are added
or removed as needed, and when the contour comes back on itself, the contour is
pinched off. Only when many (on the order of 10) pinch—offs have occurred is there a
significant loss of vorticity (on the order of several percent) in all of the calculations

in this chapter.

In order to understand the implementation of this technique for the problem of
flow over topography, the simplest problem of barotropic flow in one layer over quasi-
geostrophic topography is discussed first. This work is a review of the work of Kozlov
(1983). For slow flow over small topography, the quasi-geostrophic approximation
can be made. In this case, the potential vorticity advected by the flow is given by

h
q= V2'¢' + _6_’ (45)

which is the non-dimensionalized potential vorticity equation where h is the non-
dimensional depth function, and € is the Rossby number defined by ¢ = U/fL where U
is the velocity scale and L is the length scale of the topography. When the topography
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is piecewise constant, the relative vorticity is piecewise constant and is given by

equation 4.5.

Before the background flow is turned on, there is no flow anywhere, so the
quasi-geostrophic potential vorticity is zero away from the topography and is ho/e
over the topography while the relative vorticity is zero everywhere. When we turn on
a background flow, the fluid over the topography is pushed off the topography, and is
stretched so it gains cyclonic vorticity of size ho/e. Meanwhile, fluid from upstream
is pushed over the topography and is squashed, so it gains anticyclonic vorticity of

size —hg/e.

There are two regions of non-zero vorticity to consider (Figure 4.1). The re-
gion of fluid which originated upstream that moves over the topnerarhy (region A)
has relative vorticity —ho/¢; the region of fluid which originated over the topogra-
phy that moves off the topography (region C) has relative vorticity hg/e. Region B
has no relative vorticity and is composed of fluid parcels which originated over the
topography and remain there. This region is the overlap of the circle and the line
which delineates the region of fluid which originated over the topography at ¢t = 0. In
order to find the flow everywhere, a contour integral around region A and a contour
integral around region C are done. Instead of evaluating the contours that bound
region A and C separately, we evaluate the topographic contour (a circle) using po-
tential vorticity —ho/e and the contour that bounds the fluid that originated over the
topography using potential vorticity ho/e and add the results to take advantage of the
cancellation in region B. This method can be used for any arbitrarily shaped region
and is not restricted to a circle. The problem that Kozlov (1983) considered was
flow over a circular cylinder, where an analytic solution can be found for the contour

integral around the circular topography, simplifying the calculation even further.

Once the position of the contours are known, the velocity field can be calculated

everywhere. The stream function is the inverse laplacian of the vorticity, and so
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Figure 4.1: Schematic of the different regions of constant relative vorticity. Outside
of the two contours, the vorticity is zero. In region A, the vorticity is anticyclonic
with value —ho/¢, in region B the vorticity is zero, and in region C the vorticity is
cyclonic with value ho/e. The circular dashed contour delineates the boundary of the
topography. The solid contour delineates the boundary of the fluid which originated
over the topography.
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is much smoother field than the vorticity field. Even though the vorticity jumps
discontinuously on the boundary of the contours, the velocity field does not. The
velocity field can be inferred from the positions of the contours at each time step. For
instance, in Figure 4.1 the flow is anticyclonic in region A, cyclonic in region C with
a uniform background flow superimposed. Therefore, the flow field that corresponds
to the positions of the contours in Figure 4.1 is a dipole field imbedded in a uniform
background flow. Examples of the velocity field for various cases will be shown in the

next section.

In this chapter we concentrate on the flow field that is induced when uniform
flow (with zero potential vorticity) impinges on topography. We have one free param-
eter, hg, and are free to choose the time evolution of the zero vorticity background

flow.

4.2.2 Numerical solutions

In this section some examples of time-dependent solutions are shown to illustrate
the basic dynamics of eddy generation and vortex interaction resulting from flow
over topography. There are two basic dynamical regimes. First, when the topogra-
phy is small enough, all of the fluid which originates over the topography is swept
downstream by the background flow. When the topography is tall; some of the fluid
that originates over the topography remains trapped there because the anticyclonic
flow generated over the topography is large enough to overcome the effect of the
background flow. In many cases at least some of the fluid that originated over the

topography escapes downstream.

We first illustrate (following Kozlov, 1983) complete shedding of the fluid which
originates over the topography when we let hg/e = 1 (Figure 4.2). The shape of the

region of marked fluid which originated over the topography changes from a circle to
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a tear drop shape as it is influenced by the cyclonic circulation over the topography,
but it remains coherent. The shed fluid remains close to the z axis as it moves

downstream.

When the topography is large, or the flow is weak, some of the fluid remains
trapped over the topography, while some is shed downstream (Figure 4.3). This pro-
cess is caused by the interaction between the region of anti-cyclonic relative vorticity
generated over the bump, and the region of cyclonic relative vorticity generated oft
the topography. After several advection times, the contour has a C-shape. Initially,
the fluid which originated over the topography is pushed downstream; it then moves
clockwise around the topography in response to the anticyclonic vorticity. The upper
part of the contour is advected over the top of the bump, while the lower part is
stretched downstream, giving the C-shape. Then, the upper part of the C is ad-
vected to the south and clockwise around the topography while the lower part of the
C is shed downstream. The contour becomes quite complicated, although there is
a tendency for the fluid to rotate clockwise around the topography. Eventually the
calculation must be stopped because the contours become too complicated. Unlike
Kozlov (1983), we proceed to calculate the velocity field near the topography which is
determined once the position of the contours is known. This field is shown in Figure
4.4 where we can see how the fluid which originated over the topography is advected
by the velocity generated from the vorticity field. The velocity field is smoother than

the vorticity field since it is an integral of the vorticity.

As Verron and LeProvost (1985) suggested after the fluid has been moved to
the base of the bump (for instance see t = 1 in Figure 4.3) it appears to be in a
state similar to the steady-state solution found by Johnson (1978). However, the
flow is progressively altered. Kozlov (1983) showed that Johnson’s (1978) solution is
unstable to small perturbations so it is not surprising that the fluid does not remain in

this state. The velocity field (Figure 4.4a) at t = 1 shows that in this early state the
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Figure 4.2: Time evolution of the contour for a case when all of the fluid is shed
downstream. For this case, hg/€¢ = 1 and the flow is turned on abruptly at ¢ = 0. A
snap shot of the contours is taken at ¢ = 0, 1,...,10 with time increasing to the right
and downward. The dashed contour is the boundary of the topography; the solid
contour delineates the boundary of the fluid that originated over the topography
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Figure 4.3: Time evolution of the contour for a case when some of the fluid is shed
downstream. For this case, ho/e = 5 and the flow is turned on abruptly at t = 0. A
snap shot of the contours is taken at ¢t = 0,1, ...,9.
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Figure 4.4: Velocity field for the case shown in Figure 4.3 at (a)t =1, (b) t = 3, (c)
t =5, and (d)t = 7.
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flow field has a dipole structure. Both the eddy that is trapped over the topography

and the shed eddy contained closed streamlines as can be seen in Figure 4.4.

When the vortex interaction is strong, as in our example, the cyclonic eddy is
wrapped up in the anticyclonic eddy (Figure 4.3). We observe progressive ejection of
filaments from the patch of fluid that originated over the topogri phy as the contour
is advected clockwise around the topography. We attempt to understand this process
to first order as the progression of a topographic Rossby wave around the topography.
Linear theory gives the period of oscillation to be ¢t = 47¢/hg in units of the advection
time (Johnson, 1984). The linear theory applies when the topographic time is much
less than the advection time (¢/ho << 1). The topographic time is given by theinve ;e
of the magnitude of the vorticity generated over the topography. There is an order
of magnitude agreement between the linear theory and the period of rotation of the
patch of fluid seen in Figure 4.3. For the our choice of kg /e the linear oscillation period
is about 2.5. We observe that the trapped fluid oscillates around the topography in
about 4 advection times, suggesting that non-linearities are of order one importance.
In both simulations of Verron and LeProvost (1985) and James (1980), the ejected
fluid is often entrained back into the trapped fluid. This process most likely has to do
with the finite value of friction in their models, and as such is not seen in our model

simulation.

The advection time scale and topographic time scale (¢/ho) are both order one
in the model runs shown here. Over several advection times it is plausible that the
system reaches a quasi-steady state with a finite amount of fluid trapped over the
topography. Vorticity ejection is probably an important mechanism in the path to
the steady state. Since our model is inviscid, we do not reach a steady state in the
runs shown. However, over the viscous spin up time in a real fluid, the quasi-steady

state would eventually spin up to Ingersoll’s (1969) solution discussed in Chapter 2.
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However, the quasi-steady state depends not only on hgy/¢, but also on how the flow

is initiated. We consider this effect next.

To extend both the work of Kozlov (1983) and Verron and LeProvost (1985)
we consider the effect of turning on the background flow over different amounts of

time. We choose

U = Uptanh(t/7.). (4.6)

In the two examples (Figures 4.2 and 4.3) the background flow was turned on abruptly
at t = 0. In the examples discussed below, 7, is finite. In the case of Figure 4.5
we use the same height of the topography, but turn on the background flow over 4
advection time scales. We calculate the amount of marked fluid that remains over the
topography as a function of time (Figure 4.6). It can be seen that, as time increases,
the amount of shed fluid increases, while as 7, increases, the amount of shed fluid

decreases.

As discussed in Chapter 2, Johnson (1984) suggested that Ingersoll’s (1969)
solution may be set up in an initial value problem similar to the one considered here.
He assumes that the solution is set up over an advection time. Johnson (1984) calls
this solution the maximum retention solution because in it the maximum amount of
fluid is retained over the topography. There are intermediate retention solutions that
are introduced in Chapter 2. In these solutions, the trapped fluid is contained within
a circular contour with center z = 0, y = 2¢/ho and radius 7o that has magnitude
anywhere from zero up to Ingersoll’s (1969) solution radius of ro = r. = 1 — 2¢/hy.
These states were found for intermediate values of the undetermined constant C in
Chapter 2. This provides an infinite set of possible steady solutions where some
of the fluid is shed downstream and the rest is trapped over the topography. The
difference between these solutions and Ingersoll’s (1969) solutions is that there are
closed streamlines located outside the circle of radius 7. Because of this, they can

only exist for times short compared to 7, the spin up time.
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Figure 4.5: Time evolution of the contour for a case when part of the fluid is trapped
near the contour. ho/e = 5 and the flow is turned on slowly with time scale 7, = 4.
A snap shot of the contours is taken at £t = 0,1,2,3,...8.




Figure 4.6: The area of the contour that remains over the topography as a function
of time when ho/e = 5. The three lines are for three different value of 7, in 4.6. The
solid line is for 7, = 0, (the flow is turned on abruptly), the dashed line for 7, = 1 and
finally the dotted line is for 7, = 4. As 7, increases, it is plausible that approaches
1.13, the amount of fluid left over the topography in the maximum retention solution.
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The family of solutions are similar to Ingersoll’s solution; for » > 1 they are

h ]
P = —-—olnr+~]-(—lnz— —rsinf — 1,
2¢ 2r 7o
and for r < 1 they are
h 1}
P = ___0( 2_1)+_I_{-1nr——rsin0—1,
2¢ 2n 7o

where K = whor/e and r' is the radius referenced to z = 0, y = —2¢/ho. The fluid
is stagnant within the circle of radius ro. The potential vorticity within this circle is
ho/€, and this value is consistent with the initial value problem discussed above. We
numerically tested the stability of this solution to small perturbations and it is stable.
As 7, increases, the amount of fluid remaining over the topography increases, and it is
plausible that it approaches nr? as 7, becomes large. We surmise that the maximum
retention solution can be realized by turning on the background flow very slowly.
Intermediate retention solutions probably occur when the flow is turned on over a
finite time, and a steady state can be reached with some trapped fluid remaining for

a time less than the spin-up time.

We compare the possible steady state solutions of this problem with results
from the initial value problem (Figures 4.7 and 4.8). In Figure 4.7, three steady solu-
tions are shown. First, we compare the inertial solution in which all of the fluid which
originated over the topography has been swept down stream to Ingersoll’s (1969) so-
lution where there is a region of trapped fluid and there are no closed streamlines
outside of this fluid. Finally, the intermediate retention solution is constructed choos-
ing 7o such that nr2 = 1.13, which was the amount of fluid which was retained over
the topography in Figure 4.3. In Figure 4.8 we show the velocity field for the last time
step of the runs shown in Figures 4.3 and 4.5. Figure 4.8a compares quite well with
Figure 4.7c as we predicted. Note in particular that the stagnation point in Figure
4.7c is located closer to the topography than in Figure 4.7a, and matches more closely

the location of the stagnation point in Figure 4.8a. We note that the amount of fluid
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which has potential vorticity —ho/€ is the same in Figure 4.7a and 4.8a. In addition,

Figure 4.8b compares well with Figure 4.7b. These comparisons give strength to our
assumption that the maximum retention solution is realized as 7, becomes large, while
intermediate retention solutions are found as quasi-steady states when 7, is finite.
Over time scales comparable to the spin-up time, we expect that Figure 4.7b would
give the final steady-state configuration. The fluid trapped within closed streamlines
in the maximum retention solution is thus composed entirely of fluid which originated
over the topography. In contrast, in the intermediate retention solution, some of the

fluid that is trapped within closed streamlines originated upstream.

4.3 Flow in one layer over finite topography

As shown in Section 3.3, flow over finite topography can have a very different character
from that of flow over quasi-geostrophic topography. In this section time-dependent
flow over finite topography in the form of a right circular cylinder is discussed. We
refer again to the schematic in Figure 1.1. Because fluid parcels experience finite depth
changes, a modified contour dynamics method is used to find the time-dependent
behavior of the system. As in the steady solution, we let the transport normal to
the boundary and the tangential velocity along the topography be continuous. These
matching conditions are more ¢ _plicated than those needed in the quasi-geostrophic
solutions and require a different Green’s function than that given in 4.3. Given
the topography and any distribution of vorticity, the solution could be found by
determining the appropriate Green’s function such that the matching conditions are
satisfied and integrating the vorticity over all space. Unfortunately, such a Green’s
function lacks the appropriate symmetry to be able to use contour dynamics directly,
and the velocity cannot be determined simply by doing contour integrals. Instead,
the solutions are found by applying the boundary conditions independently at each
time step. The simplest application of this method is given in Appendix C where
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Figure 4.7: Streamlines for steady inviscid flow over topography when hg/e = 5. (a)

The inertial solution ¥{*), (b) Ingersoll’s (1969) solution, and (c) the intermediate
retention solution with r¢ = 0.4.
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(b)

4 and t = 8.

Figure 4.8: Velocity field in the time dependent model when hg/e = 5.

and t = 9, (b) 7,




the problem of a finite patch of vorticity impinging on an island in a barotropic fluid
is addressed. We find two dynamical regimes that we did not observe in the quasi-

geostrophic simulations due to the different dynamics in the finite depth model.

4.3.1 Numerical method

In this section, a modified contour dynamics method is discussed that allows solu-
tion of time dependent evolution of flow over finite topography. Traditional contour
dynamics must be altered because the Green’s function for the problem lacks the
symmetry so that the area integral in 4.2 can not be transformed to a contour inte-
gral. If the Green’s function is composed of a linear combination of functions g;, then

each g; must have
0gi(x,bfz') 0gi(x,bfz')
==+ .
Jz oz’

The same condition must hold for the y and y’ derivatives. Because of the lack of

(4.7)

symmetry these condition do not hold for the problem at hand; it is solved instead
by applying the boundary conditions explicitly at each time-step. In other words,
the problem is divided into a homogeneous solution, driven by the application of
the boundary conditions, and a particular solution which is simply the appropriate
contour integral using the logarithmic Green’s function given in 4.3 which is valid
everywhere when there are no matching conditions. The homogeneous solution is the
zero potential vorticity solution which must be added so that the matching conditions

are satisfied and is composed of a Fourier series.

Unlike the situation in which there is flow over a quasi-geostrophic bump, the
induced cyclonic and anticyclonic relative vorticities have different magnitudes when

the depth is finite. The scaled potential vorticity equation is given by

1
e GRS
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where the potential vorticity q is

l+eV-%

9= 1% (4.8)

where ¢ is the Rossby number and h is the height of the topography scaled by the
total depth of the fluid as before, and % is the transport stream function. Both h
and ¢ can be order one. The reader is referred to Section 3.3 and Appendix B for
additional comments on the consequences of these equations. Before the background
flow has been turned on, the upstream fluid has potential vorticity ¢ = 1 while the
potential vorticity of the fluid over the topography has value ¢ = 1/(1 — ko) where
ho is the height of the topography. When the background flow is turned on, the fluid
over the topography is pushed off and stretched, gaining cyclonic relative vorticity

h
(= °
€

—(T_——h-;')', (4.9)

while the fluid that has been brought from upstream over the topography has anti-

cyclonic relative vorticity
B ho(1 — ho)

€

¢ = (4.10)
In the quasi-geostrophic limit, hg — 0 but ho/e finite, we find that 4.9 and 4.10
approach the same limiting magnitude. This introduces an additional complication
into the numerical method, because now the potential vorticities in the two regions

do not cancel exactly, unlike the cancellation in region B in Figure 4.1 that we took

advantage of in Section 4.2.

The problem is solved at each time step by considering the region » > 1
separately from the region r < 1. In each region the contour integral is done only
over the part of the contour contained within that region using the simple logarithmic
Green’s function. Then the matching conditions are satisfied. To do this, a solution
with zero vorticity is added so that the two regions can be matched. The homogeneous

solution chosen has velocity that decays far away from the topography. In particular,
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the homogeneous (zero potential vorticity) solution can be written
- bt .
d)' — Z ane—"lar'"' (4.11)
-0

for r < 1 and
P° = Z bye~r-Inl 4 bInr (4.12)

for r > 1.

The contribution to the velocity at » = 1 from the contour integral is then
calculated separately for r = 11 and r = 1~ using the contribution to the contour
integral only within the appropriate regions (r > 1 or r < 1 respectively), (Figure
4.9). The velocities are calculated at 2™ = N points evenly spaced in 8 at r = 1,
in cartesian coordinates first, and then are transformed to polar coordinates since
the matching conditions are applied to the radial and azimuthal velocities. The

transformation is applied via
7 =1cosf + 7 sin b,
6 = —isind + j cos¥,

and

1= pcosf — fsin b,
7 = psinf + 6 cos .

A Fast Fourier Transform is performed on the polar velocities at r = 1 to decompose

them into modes in 8 such that

N/2

ur=17,0)= Y uje
n=-N/2

and
N/2 )

v(r = 1-,0) = Z v:‘e’i"o

n=-N/2

where now u is the radial velocity and v is the azimuthal velocity. Likewise, similar

equations can be written with subscripts o for the velocity at r = 1.
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(b)

Figure 4.9: A schematic of the contour integration for the finite topography model.
(a) The contour integrals done for points with 7 < 1 and (b) for points with r < 1. The
arrows indicate the direction of counter-clockwise integration. The dotted region in
(a) has relative vorticity { = —ho(1 — hq)/€ while the dotted region in (b) has relative
vorticity { = ho/e(1 — hq).
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The a,’s, b,’s and b can be found by applying the matching conditions at
r = 1. Remembering that the stream function is the transport stream function, the

matching conditions reduce to
ina, + (1 — ho)u!, = inb, + ul, (4.13)

for the transport normal to the edge of the topography to be continuous and

B i = —nbn 4 ° + bbng (4.14)
1= ho

for the tangential velocity to be continuous. From 4.13 and 4.14, the coefficients a,,

and b, in 4.11 and 4.12 can be calculated. We note that for a real solution a, = a*,

and b, = b* .

To find the velocity field, the contour integral is calculated for the region in
which the point of interest lies (r < 1 or » > 1), and then the series solution is
summed for the z and y of the point of the contour in question. Typically 16 modes
are used in the decomposition. Mass is conserved, as long as the contours are not too
broken up as discussed in Section 4.2. Otherwise the mass is conserved within one

percent. Vorticity (mass) conservation is no longer equivalent to area conservation.

The contour integrals themselves are more difficult to evaluate than those in
traditional contour dynamics because they have to be calculated for the regions r > 1
and r < 1 separately. The algorithm used to calculate each line integral is done in
several steps as illustrated in Figure 4.9. First, the intersection points of the contour
with the edge of the topography, the circle of radius 1, are found. Whether the contour
is entering or exiting the circle, in the sense of the direction of the integration, is also
recorded as a vector. Then the intersection points are ordered in 8, sorting the
intersection flags in the same way. For the part of the integral on the contour the
integration is done until the contour crosses the circle, then a point is interpolated
onto the circle which is between the two points on the contour on either side of the

circle. The integrals around the arc of the circle must then be performed to complete
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the path, and the flag that tells the direction in which the contour has crossed the
circle at each intersection point is used to determine which arcs of the circle belong

to the contour integral.

4.3.2 Numerical solutions

As shown in Section 3.3, an important difference between the quasi-geostrophic model
and the finite depth model is the horizontal divergence of the flow field. Because of
this divergence, flow is enhanced over the obstacle and some of the flow is divided
to go around the obstacle. No closed streamlines are formed in the steady solution
as long as the Rossby number is greater than 1/4 no matter how high the obstacle
because of the enhancement of the flow over the topography. An additional difference,
which is important for the time-dependent simulations, is that the magnitude of the
anticyclonic circulation is less than the magnitude of the induced cyclonic circulation.
These differences combine to cause a different evolution of the flow field during the

eddy shedding process from that seen in the quasi-geostrophic model.

A series of numerical experiments is examined to show the effects of the finite
topography. In order to obtain results here which we can compare directly with the
quasi—geostrophic runs we let hg/e = 5 in all of the examples that we show for flow
over finite topography. In each run, we vary hq only, and the Rossby number changes
implicitly since € = ho/5. In order to study the evolution of the trapped eddy, only
runs with ¢ < 1/4 are considered. The flow over the topography is faster. In botk
cases, after several advection times, the contour has a C shape as we saw in Figure

4.3.

When the height of the bump is one quarter of the water depth (with a Rossby
number of .05), the shed eddy rotates more rapidly than in the quasi-geostrophic run
in Figure 4.3, (Figure 4.10). This is due to the larger magnitude of the cyclonic
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circulation in the finite depth model. The development of the upper portion of the
C is faster in tle finite depth run because of the enhancement of the velocity over
the topography. The patch of ejected fluid that originated at the upper part of the
C is trapped more strongly to the shed eddy. The shed eddy is ejected further to the

south.

When the height of the topography is even larger, (2 = 0.5 and Rossby number
of 0.1) the eddy shedding process begins to look different (Figure 4.11). The two
extremities of the C result in two places in which fluid can be shed. The fluid is moved
in the clockwise direction due to the anticyclonic vorticity over the topography and
is stretched and advected across the northern half of the bump as before. Eventually,
some of this fluid in the upper part of the C is pushed off the bump and escapes. The
progression of the fluid over the northern part of the topography is faster because
the background flow is enhanced over the topography. In the quasi-geostrophic run,
this patch of fluid is also advected southward by the anticyclonic circulation and is
then stretched and caught up by the southern end of the C, but here the northern
part of the C is shed before it comes into contact with the southern eddy. There are
therefore potentially two cyclonic eddies created. The rorthern eddy is swept into
the part of the flow that is split by the topography and escapes downstream. The
velocity in Figure 4.12 shows that both the southern and the northern cyclonic eddies
have closed circulation patterns and are composed of fluid which originated over the

topography.

When the topography takes up most of the water column (A = 0.75 and Rossby
number of 0.15) the behavior changes yet again (Figure 4.13). In this regime, there is
oscillatory behavior, and the C-shaped structure is no longer seen. Instead, the fluid
rotates around the topography and oscillates on and off the topography. The period
of the oscillation is close to 2 advection times, reasonably close to the linear theory

value of 2.5 (47 /ehg). The mass of the fluid is conserved, but not the area of the
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Figure 4.10: Time evolution of the contour for the finite depth model when hy = 0.25
and ho/e = 5 as in Figure 4.3 for t = 1,2,...8.
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Figure 4.11:
att=1,2,..

Time evolution of the contour for the finite depth model when h¢ = 0.5
8.
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Figure 4.12: Flow field for the case shown in Figure 4.11. (a) t = 1, (b) t = 3, (c)
t=>5,and (d) t=7.
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contour, as can be seen easily in this example. Initially, the fluid is pushed off of the
topography, generating anticyclonic circulation over the topography, and rotating the
fluid around the topography in a clockwise direction as a dipole. Then, the upstream
flow pushes the fluid back over the topography when the fluid has moved to the west
side of the topography. Then the process begins over again. The velocity is shown in
Figure 4.14 for the first oscillation period. It can be seen that the flow field induced
is nearly symmetric about the z axis. The oscillation is associated with a dipole field
that moves around the topography. The flow is enhanced over the topography as
required in the finite depth model. As can be seen in Figure 4.13, the oscillation is
fairly stable, the wiggles that appear on the contour could be a numerical instability,

and not a physical one.

Because this model involves finite depth changes, while not allowing vertical
variations in the horizontal velocity, there are several potential problems that we
hope do not affect the qualitative description of the eddy shedding process. First,
because the depth changes a finite amount over an infinitesimal distance, one would
expect large vertical velocities at the boundary of the topography, which results in
a breakdown in one of the physical approximations of the model, that the vertical
variations of the horizontal velocity are negligible. This problem is considered in
Section 3.3 and Appendix B. The second potential problem is numerical. Consider
two points on the contour that straddle an intersection of the contour and the circle
with radius 1, the edge of the topography. The point just inside the topography has
velocity U while the point just outside the velocity has velocity U(1 — hy) due to
the conservation of radial transport. Thus, over the next time step, the point over
the topography is moved a distance UAt while the point not over the topography is
moved UAt(1 — ho). The point originally over the topography can overtake the point
not over the topography. This error can create kinks in the contour, possibly those
seen in Figure 4.13. The errors associated with this are of the size of the time step

At, while the error in the time stepping scheme is order At?, so the results are less
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Figure 4.13: Time evolution of the contour for the finite depth model when hy = 0.75
and ho/e = 5 as in Figure 4.3 for ¢ = 0.5,1,1.5,...,7.5.




Figure 4.14: Flow field for the case shown in Figure 4.13. (a) t = 0.5, (b)t=1,(c)
t = 1.5, and (d) ¢t = 2. Note that the arrows indicate velocity not transport, and the

radial velocity is discontinuous at r = 1.

168




accurate because of this. In order to improve the numerical stability of the method,
one must then reduce the time step. This was done for a case which was initially
numerically unstable in which the vorticity does not remain conserved. When the
time step was reduced, the solution became numerically stable and the total amount

of vorticity was conserved.

The model illuminates some of the effects of flow over finite topography and
how the eddy shedding process differs from the quasi-geostrophic process. As the
topographic height is increased for a fixed hq/e ratio, the model goes through a
progression of different behaviors. When the topography is small, the model behaves
like the quasi-geostrophic model; the contour that marks the fluid that originates
over the topography is deformed into a C-shape, and then the northern end of the
C is advected to the south where it is sheared by the southern end and these two
pieces become the shed eddy. When the height of the topography is increased further
(ho = 0.5), the northern piece and southern piece are shed independently as the
northern piece is advected by the enhanced flow over the topography, and two cyclonic
eddies are created. Finally, when the topography is quite large, an oscillatory regime
is reached where the fluid starting over the topography oscillates on and off the

topography and moves clockwise around the topography.

4.4 Flow in two layers over small topography

Once we understand the behavior of flow over topography in one layer, the next thing
to consider is flow in two layers. The two-layer model is the simplest model that
captures the effects of stratification. The equivalent barotropic model is inappropri-
ate for flow over oceanic topographic features, because in the equivalent barotropic
approximation, the deeper layer is assumed to be stagnant, and in the ocean, the

lower layer where the flow is interacting with topography is much deeper than the

169




upper layer but cannot be assumed to be stagnant. In this section, we study the
flow over a bump which has fractional height of the same order as the Rossby num-
ber. The dynamics of the model are illustrated by considering two situations, one
in which the stratification is moderately strong, and one in which the stratification
is weak. We choose the topographic height so that comparisons can be made to the
quasi-geostrophic runs made in Section 4.2. As in the previous Section 4.2 and 4.3,
we concentrate on the situation in which there is partial trapping of fluid over the

topography.

The model geometry is identical to the geometry used by McCartney (1975)
and is shown in Figure 1.1. Because we are using the method of contour dynamics,
we once again restrict ourselves to background flow which is uniform in both the
horizontal and the vertical. This restriction reduces the number of free parameters
to ho/e where hg is the height of the topography relative to the total layer depth,
8§ =(1-d)/d and vy = L/Lgr where L is the radius of the topography, and

L2 . gAp(H - d,)
R — P ’
pf

where p is the density of the fluid and Ap is the density difference between the two

layers.

4.4.1 Numerical Method

For flow over small topography, the method of solution is the same as for the flow
over small topography in one layer, except that the two layer Green’s function is
used. In particular, the two-layer quasi-geostrophic potential vorticity equations can

be written
ath + J(¢n1 qn) =0
for n = 1,2 where

a=Vip + v (%2 — ¥1), (4.15)
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and

h(1 + 6)

g = VP + 87 (1 — ¥2) + (4.16)

The flow field can be found with the method developed in Section 4.2, by
solving for the relative vorticity and doing contour integrals to find the velocity.
Once again, the magnitude of the induced anticyclonic and cyclonic relative vorticity
cancel exactly. The flow can be found by integrating over the contour in the lower
layer which delineates the fluid that originated over the topography. The contour
over the lopography can be done analytically as before. The contribution from the

topographic contour integral is given by

ho (Bl py(Ir) - 1r?)  r <1

¥ =
' ﬁ“?-(—I—‘fnzzl('o(l"r) —Inr) r>1,
and
" ﬁ(“-(—ﬁglégfo(rr) -3 r<1
2 —_

ha (B Ky(Ir) —Inr) > 1.
This is just McCartney’s steady solution for flow over small topography when the
background shear is zero and corresponds to Merkine and Kalnay-Rivas (1976) bound
vortex solution. It is the solution that would be found if all of the fluid that originated

over the topography were swept off, and then the background flow were turned off.

The velocities induced by this stream function are found by taking the ap-
propriate derivative in z or y. The contribution to the velocities from the contour

integral over the contour that moves is given by
1 ho(1 4+ 6 ,
1/),-(:t,y) = 2—7‘_//-—0(?——)G,,(R)dz'dy (4.17)

where R = {(z — 2')? + (y — ¥')?]'/? and G,; is the Green’s function for the effect in
layer ¢ of a point vortex in layer j (Polvani, 1988). For this problem, a subset of the

Gij’s is needed since the vorticity is zero everywhere except within the region of fluid
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that originated over the topography in the lower layer. These Green’s functions are

given by
1 1
= R .
Glz 1 To In + 1 n 5K0(FR) (4 18)
G = — W R— —_Ky(TR) (4.19)
27146 1+6 ° '
where

and K, is the modified Bessel function of order zero. The fundamental length scale
of the problem is the Rossby radius of deformation, 1/T in units of the radius of the
topography. The velocity is found as before by taking derivatives and converting the

area integral into a contour integral.

The interface height can be calculated for any time once the position of the
contours are known. The upper layer potential vorticity is always zero; therefore, the
interface height can be calculated by finding the relative vorticity in the upper layer:

_T2(2 =) 6V
T (1482 T 146

(4.20)

from 4.15. The relative vorticity can be calculated directly from the contour integral
4.17:

Gn;gﬁ) (= — 2")dy' — (y — y')da]. (4.21)

It is important to note that there is no singularity in this integral since the point

Vzd’z:vz—‘u,y-_—f
aD

where the vorticity is being calculated is in the upper layer, while the singularities

are all in the lower layer.

4.4.2 Numerical solutions

In the numerical solutions we let the layer depths be equal and consider two values

of stratification. In each run, a contour delineating the fluid that originates over the
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topography in the upper layer is followed throughout the evolution of the flow. This
contour is dynamically inactive, but shows where particles that originated over the
topography in the upper layer end up. Comparing this contour and the contour that
marks the fluid that originated over the topography in the lower layer serves to show
how much the two layers are coupled. The results are compared with the one-layer

quasi-geostrophic solutions discussed in Section 4.2.

When I' = 0.25 and ho/e = 2.5, the upper layer contour is not coincident with
the lower layer contour, and the response is baroclinic (Figure 4.14). When the strat-
ification is strong (T small), the layers are uncoupled: the lower layer responds like a
one layer fluid such as was described in Section 4.2 with half the depth. Therefore,
this value of topographic height can be compared with topographic heights ho/e = 5
in the one-layer model. At the same time, the lower layer contour in Figure 4.15
is nearly identical to the contour in Figure 4.3. The upper layer contour moves off
downstream with little distortion. The steady solution of this problem for these values
of parameters which predicts that some fluid would be trapped over the topography
is illustrated by considering the critical height above which closed streamlines form in
the steady solution as shown in Figure 3.20. Figure 4.3 shows that some fluid remains

over the topography in the initial value problem.

When the stratification is weak (T large), the fluid responds more baroirop-
ically than in the previous example (Figure 4.16). The contours in the upper and
lower layers nearly overlay each other. The fluid responds nearly as a one-layer fluid.
Less fluid remains over the topography when the stratification decreases because the
fluid is less bottom trapped. This result is predicted from the steady solutions as
seen in Figure 3.20. Calculation of the flow field indicates that the flow is nearly
barotropic both over the topography and in the shed eddy that is downstream of the
topography, although the anticyclonic circulation is slightly larger in the lower layer
(Figure 4.17).
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Figure 4.15: Time evolution of the contours which delineate fluid that originated
over the topography in the upver layer (solid) and in the lower layer (dashed) in the
two-layer small topography model. T' = 0.25, § = 1 and ho/e = 2.5, ¢t = 0,1,2,3,4.
The stratification is strong so the two layers are relatively uncoupled. The lower layer
contour has nearly the same evolution as the contour in Figure 4.3. The upper layer
contour is deformed very little and the fluid escapes downstream. The upper layer
contour is simply a passive tracer of the flow in the upper layer.
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Figure 4.16: Time evolution of the contours that delineate fluid that originated over
the topography in the upper layer (solid) and in the lower layer (dashed) in the two-
layer small topography model. T = 4, § = 1 and ho/e = 2.5, t = 0,1,2,3,4. The
stratification is weak so the two layers are strongly coupled. Little fluid remains over
the topography.
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Lower layer, (b) upper layer. The flow in the two layers is nearly identical. The shed
eddy has cyclonic circulation, while the flow over the topography is anticyclonic. The

Figure 4.17: The flow field of the fluid for the case shown in Figure 4.16 at t = 4. (a)
response is slightly larger in the lower layer and is bottom trapped.
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The interface is raised over the topography as has been seen in other quasi-
geostrophic stratified models, and the shed eddy carries a warm anomaly downstream
(Figures 4.18 and 4.19). The sign of the interface displacement is the same as is seen

in a primitive equation models, (Huppert and Bryan, 1976).

When the topographic height is twice the size as in the case above (ho/e = 5
and Figure 4.20), the development of the lower layer contour is quite similar to what
is seen in Figure 4.3. However, for this case, the upper layer contour no longer overlies
the lower layer contour. Even for this small value of stratification, fluid only remains

over the topography in the lower layer.

Although as we showed earlier in Section 4.2 the amount of fluid trapped
depends on how the flow is initiated, the steady solution provides a way to understand
when fluid will be trapped over the topography in the initial value problem. The
amount of fluid that remains over the topography is less than predicted from the
inertial theory discussed in Chapter 3. Additional fluid which originated upstream is
also trapped within closed streamlines over the top. graphy (Figure 4.17). We chose to
illustrate how the model depends on the stratification. The flow development can be
understood by considering that the two-layer problem behaves fairly similarly to the
one-layer example, but with an adjusted topographic height to accor- -t for the vertical
scale of the bottom trapping. Basic quasi-geostrophic dynamics are illustrated well

with these examples.

4.5 Flow over finite topography in two layers

The next step in understanding flow over topography in a baroclinic ocean is to con-
sider time-dependent flow over finite topography. The model we use is the same one
that is considered in Section 3.3 and is shown schematically in Figure 1.1. The model

is of flow impinging on topography which goes all the way thro: gh the lower layer,
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Figure 4.18: The interface displacement for the case shown in Figure 4.16 at ¢ = 4.
Dashed contours indicate negative interface displacement. The interface is high over
the topography and is low over the shed eddy. The shed eddy is warm core, cyclonic
and bottom trapped. The solid line outside of = 1 is the contour which delineates
fluid which originaied over the topography in the upper layer; the line with the larger
dashes delineated the fluid which originated over the topography in the upper layer.
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Figure 4.19: The interface displacement for the case shown in Figure 4.16 at a cut
along the z axis at t = 1,2,3,4. The interface is raised near the topography and
is lowered over the shed eddy. The shed eddy is warm core and bottom trapped.
Notice that the cut is not taken through the center of the eddy, so that the maximum
interface displacement due to the shed eddy is larger than shown. The interface is
offset by 0.75 for t =2, 1.5 for t = 3, and 2.25 for t = 4.
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Figure 4.20: Time evolution of the contours that delineate fluid that originated over
the topography in the upper layer (solid) and in the lower layer (dashed) in the two-
layer small topography model. T' = 4, § = 1 and ho/e = 5, t = 0,1,2,3,4. The
stratification is weak so the two layers are strongly coupled. The lower layer contour
has similar evolution as seen in Figure 4.3 for the one-layer model run with he/e = 5.
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and has only order Rossby number penetration into the upper layer. The restrictions
of this model have been discussed earlier, and the steady model has been shown to
have dynamics consistent with the approximations. Time dependent solutions for this
geometry are compared with those for flow over small topography in Section 4.4 so
that the eddy shedding process in a stratified fluid can be better understood. The
method of solution used in this problem is similar to that for the problem of barotropic
flow over finite topography (Section 4.3). Once again, the problem is solved in two
regions and then a zero potential vorticity solution is used to apply the matching and
boundary conditions. We concentrate on the two values for the stratification used in

Section 4.4.

4.5.1 Numerical Method

In this model, the layer depths are changed by only an order Rossby number amount,
both over the topography and away from the topography. Therefore, the magnitude
of the induced cyclonic and anticyclonic circulations is the same. We independently
solve the contour dynamics problem in the two regions (over the topography and away
from the topography) and then use the zero potential vorticity solution to match the
two regions together. In the interior region, the fluid satisfies the one-layer potential
vorticity equation, while, in the outer region, the fluid satisfies the two layer equation.
Therefore, the form of the Green’s functions as well as the zero potential vorticity

equations are different in the two regions.

In the inner region, the Green’s function is simply the one-layer logarithmic
Green’s function given in 4.3. In the outer region, the Green’s function is similar
to the Green’s function used in 4.18 and 4.19, but this time the potential vorticity

anomaly is in the upper layer. Therefore, the Green’s functions needed in the outer
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region are

)
= 1 —
and
Gr= ——InR- -4 KyrR) 4.23
o= gl R o KolTR). (423)

The zero potential vorticity solution is found as in Section 4.3 by applying
matching conditions in addition to boundary conditions applicable to the geometry
of the problem. The contribution to the velocity from the contour integral is found
at r = 1 for the upper and lower layers in the outer region (r > 1) and for the upper
layer in the inner region (r < 1). The velocity is then transformed into cylindrical
coordinates, and application of a Fast Fourier Transform decomposes the velocity into
a sum of modes in 8. Thus at r = 1, the edge of the topography, the velocity can be
written in the outer region as

N/2

> ule™ (4.24)

n=-N/2

N/2

v;(0)= Y vie —ind (4.25)

n=—N/2

where j delineates the layer and

N/2

= > ue (4.26)

n==N/2

N/2

v(@)= Y vie™ (4.27)

n=-N/2
for the velocity in the inner region (where now u is the radial velocity and v is the

azimuthal velocity).

The homogeneous solutions are written

N/2
Y= Y Ky (Tr)e ™ + bor~iMe™ + blnvr (4.28)
n=-N/2
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and

N2 | |
Yi= Y —ba.Ki,(Tr)e™™ +b,r e 4 plnr (4.29)
n=-N/2
forr > 1 and
N/2 .
Pr= Y curilem? (4.30)
n=-N/2

for r < 1.

The boundary conditions at the topography in the lower layer are satisfied
independently for each mode. For no flow normal to the boundary in the lower layer
we have

in(a, — 8b,K,) + u2 = 0. (4.31)

We have to choose the circulation around the topography in the lower layer, and as
we did in the steady solution we choose for there to be no circulation. This condition
gives

— §TKY(T) +b+v2 =0. (4.32)

The velocity in both directions must match in the upper layer. These conditions are

satishied when

u), +incy = in(an + baKn(T)) + ul, (4.33)

and
v} + nc, = —na, + [, K.(T) + bé,, + v1. (4.34)
We note that for a real solution a, = a*, and b, = b* . For n = 0, there is

n

no contribution from the contour integral so that uy = u} = 0, because the radial
velocity is given by u = —%l and the lowest order mode in @ of this is zero. The
coeflicients in 4.28, 4.29, and 4.30 are solved for from 4.31, 4.32, 4.33 and 4.34. In
practice, 16 modes in  were sufficient. As in Section 4.3, the vorticity is conserved

using this method.

After each numerical experiment, the height of the interface must be checked

to make sure that it does not go above the topography, because if it does, the model
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dynamics no longer make sense. The interface can be calculated everywhere, using the
lower layer potential vorticity, as in Section 4.3. In this case, the lower layer potential
vorticity is zero everywhere. The interface height is given by 4.16 with h = 0, and

can be found by calculating the relative vorticity everywhere,

Vi,
1+6

n=
similar to 4.20. The relative vorticity is calculated in two parts. First the contribution
from the zero potential vorticity solutions is determined analytically from the series
expansion, which is equivalent to calculating 5 directly from the homogeneous series
solution from the stream function in both layers. Next, the contribution from the
contour integral is calculated by taking derivatives of the contour integral in the
same way as in 4.21. For the examples shown below, the interface does not go above
the topography. We can get a qualitative idea of when the interface would go above
the topography by looking at Figure 3.19 which gives the critical height above which

we expect the interface to go above the topography in the steady solution.

4.5.2 Numerical solutions

From the steady solutions, we predict that decreasing the stratification will result
in more fluid remaining over the topography in the initial value problem (see Figure
3.20). In this model there is no fluid that originates over the topography in the
lower layer so we only show the contour that marks fluid that originated over the
topography in the upper layer. Thus a smaller volume of fluid is initially over the
topography than in the solutions shown in Section 4.4. Keeping this in mind, we

proceed to compare the two solutions.

When the stratification is strong, the interface is r' id and the layers are un-
coupled (Figure 4.21). The development of the contour is nearly identical to that
seen in both Figures 4.3 and 4.15, and the upper layer response of this model is the
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same as the lower layer response of the small topography model. The layer depths
are equal so the fraction of the upper layer taken up by the topography matches the
fractional extent of the topography in the lower layer in the small topography model.

When the stratification is weak, the amount of fluid that remains over the
topography is increased, as expected from the results of Section 3.3 and seen in
Figure 3.20, (Figure 4.22). The total velocity field shows that the shed eddy is
nearly barotropic but slightly surface intensified while the flow near the topography
is baroclinic (Figure 4.23). This response is due to the requirement that all of the
flow go around the topography in the lower layer, while some of the fluid goes over

the topography in the upper layer.

The interface is depressed near the topography and raised over the eddy (Figure
4.24) opposite to what is seen in Figure 4.18. A cut along the z axis is made to see
the time—evolution of the interface ( Figure 4.25). Initially, the interface is flat. Then
the interface is raised near the topography when the fluid which originated over the
topography is partially on and partially off the topography. As this fluid moves
downstream, the interface becomes depressed around the topography as it responds
to the anticyclonic potential vorticity anomaly in the upper layer, and the shed eddy
appears downstream of the topography as a positive perturbation which is advected
away. The interface is raised over the shed cyclonic eddy as would be expected to
compensate for the potential vorticity anomaly (Figure 4.25). However, we point
out again that this result that the shed eddy is cold core is true only because of the
detailed structure of the stratification in this model. One would expect that the shed
eddy would be cold core in a continuously stratified model only if the stratification
were sirong near the region of the interface, and relatively weak above that. If the
fluid were strongly stratified above the interface, then the shed eddy would have a
more complicated vertical structure. It would probably have a cold relative to the

external fluid in its deepest level a warm anamoly in its shallowest level. In both
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Figure 4.21: Time evolution of the contour that delineates fluid that originated over
the topography in the upper layer in the two-layer finite topography model. T' = 0.25,
§ =1and ho/e = 2.5, t = 0,1,2,3,4. The stratification is strong so the two layers
are relatively uncoupled. Notice the similarity of this figure to Figure 4.3 and Figure

4.15.
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Figure 4.22: Time evolution of the contour that delineates fluid that originated over
the topography in the upper layer in the two-layer finite topography model. T = 4,
§=1,hy/e =25,and t =0,1,2,3,4. The stratification is weak so the two layers are
strongly coupled. More fluid is trapped over the topography than in Figure 4.21.
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Figure 4.23: The flow field for the case shown in 4.22 at t = 4. (¢) Lower layer and
(b) upper layer. The lower layer flow is forced to go around the topography. The shed
eddy has cyclonic circulation, while the flow over the topography is anticyclonic.
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of the two-layer models, the interface deflects to make the layer depth smaller to
compensate for the positive relative vorticity in the fluid shed from the topography.
The cut in Figure 4.25 is not made through the center of the eddy so that the interface
excursion due ‘o the eddy is higher than shown. Also, the height of the topography
is 2.5 in the same units as the interface, above the height of the interface at the
boundary ~f the bump at » = 1. This numerical run is in a physically realizable

regime.

The examples shown above all are done with é = 1, which allows comparison
of the time evolution of the flow in this model with the two-layer model over small
topography. However, in the ocean, a more typical value for § would be 0.2, so to
make qualitative predictions with our model, we do two models runs with § = 0.2.
To compare with the previous runs, we first let the potential vorticity anomaly be
the same as the example shown in Figure 4.22. In the second run we keep ho/e€ the

same as in Figure 4.22.

The potential vorticity anomaly is given by g, = ho(1 + 6)/eé which is the
amount of relative vorticity generated when the fluid that originates over the topog-
raphy moves off the topography. In the generic case shown in Figure 4.22, q, = 5.
In Figure 4.26, we show the evolution of the contour when we use the same value of
gda, but this time § = 0.2, so that the topographic height in the upper layer is smaller
relative to the total depth of the fluid. The topographic height in the upper layer
relative to the upper layer depth is the same in the two runs. The development of
the flow field in Figure 4.26 is quite similar to that in Figure 4.22. We showed in the
steady solutions that when the lower layer thickness is larger, the flow in the lower
layer tends to be more symmetric about the z axis. There are two obvious differences
in the two time-dependent runs; first, the trapped eddy is not rotated as far in Figure
4.26 as in Figure 4.22, and second, the shed eddy is shed closer to the z axis. The

shed eddy in this run is caught up in the island-like flow which is quite important
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Figure 4.24: The interface dispiacement for the case shown in Figure 4.23 at ¢t = 4.
Dashed contours indicate negative interface displacement. The interface is depressed
near the topography and is raised over the shed eddy. The shed eddy is cold core,
cyclonic and surface trapped. The solid line outside of » = 1 delineates fluid which
originated over the topography in the upper layer.
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Figure 4.25: The interface displacement for the case shown in Figure 4.22 at a cut
along the z axis at ¢t = 1,2,3,4. The height of the topography in the same units is
2.5. The interface is depressed near the topography and is raised over the shed eddy.
The shed eddy is cold core. Notice that the cut is not taken through the center of
the eddy, so that the maximum interface displacement due to the shed eddy is larger
than shown. The interface is offset by 1 unit at £ = 2, by 2 at ¢ = 3, and by 3 at
t =4.
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close to the topography and is advected away more quickly than in Figure 4.22. The
similarity of the contour evolution between the two runs shows that the potential
vorticity anomaly dominates the flow evolution, not the height of the topography in
the upper layer. It is important to remember that the total topographic height in

Figure 4.26 in this run is an order one amount larger than that in the run in Figure

4.22.

In the second run with § = 0.2, we let the topographic perturbation be the
same as the run in Figure 4.22. In this case, more fluid is trapped over the topography
because the potential vorticity anomaly is larger in this case (Figure 4.27), and the
topographic height relative to the upper layer thickness is larger. The fluid shed off
the topography is released close to the z axis. In the lower layer, the flow is similar
to that of irrotational flow about a cylinder, and this flow couples to the upper layer
so that the shed eddy is quickly swept away close to the z axis. It is important
that the area of trapped fluid over the topography is larger in this run, but since the
layer thickness is substantially less, the total volume of fluid that remains over the

topography is actually smaller than in Figure 4.22.

4.5.3 Summary: Flow over topography in a stratified model

The two models above illuminate the basic characteristics of flow over topography
in a stratified model. In particular, the difference in the eddy generation process
between flow over topography when all of the isopycnals flow over the topography,
and flow for which an isopycnal intersects the topography has been explored. The
steady solutions presented in Section 3.3 help in the understanding of the process.
The interface displacement is calculated, and this quantity can be easily compared
to calculations done in more complicated numerical models. The finite topography

model is potentially more relevant to flow in the ocean because it allows the interface
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Figure 4.26: Time evolution of the contour that delineates fluid which originated over
the topography in the upper layer in the two-layer finite topography model. T' = 4,
6 = 0.2 and ho/e = 0.833. This run has the same potential vorticity anomaly as in
Figure 4.22.
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Figure 4.27: Time evolution of the contour that delineates fluid which originated over
the topography in the upper layer in the two-layer finite topography model. T' = 4,
6 = 0.2 and hg/e = 2.5. Successive eddies are shed by the topography.
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to intersect the topography. Although the quasi-geostrophic model is limited in
application, the dynamics in this model could be important in the ocean. We choose
not to try and make predictions of oceanic flow from this idealized model since we
have left out many important effects, including continuous stratification and vertical
shear, but rather explore the parameter dependence of the models and understand
qualitatively the evolution of the shed cyclonic eddy and trapped anticyclonic eddy
and how this evolution differs in the two-layer small topography model. We choose
to concentrate on two values of stratification to illustrate the dynamics of the models:
strong stratification in which the internal Rossby radius of deformation is 4 times the
length scale of the topography, and weak stratification in which the internal Rossby
radius of deformation is one quarter the length scale of the topography.

When the topography is small, the shed eddy is warm core and bottom trapped.
When the topography is finite, the shed eddy is cold core and surface intensified. As
predicted from the steady solution in Chapter 3, as the stratification increases, less
fluid remains over the topography in the initial value problem in the finite depth
model while more fluid remains over the topography in the small bump model. As
the lower layer depth increases, more fluid remains over the topography in the finite
depth model. The parameter that determines the amount of fluid remaining is the
topographic height in the upper layer relative to the upper layer thickness, even when
the stratification is relatively weak. The steady solutions do well in predicting what
parameters will be important in the flow evolution, but cannot predict the final steady

state of the system.

The two models shows the two classes of quasi-geostrophic solutions which are
consistent with the velocity remaining approximately horizontal. If we were to work
with a primitive equation model with continuous stratification we would expect to see
a combination of the dynamical processes seen in the two types of solutions described

in this section. We speculate that a primitive equation model would allow exploration
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of parameters such that a smooth transition between solutions of the types described

could be found.

4.6 Summary and conclusions

In this chapter we study eddy generation by flow over topography in four different
models as sketched in Figure 1.1. First, we consider flow over topography in one
layer and find that the amount of fluid that remains over the topograpty increases
as we increase the time over which the background flow is turned on. This suggests
that the solution from the initial value problem is identical to the maximum retention
solution when the turn on time of the background flow becomes very large, while the
intermediate retention solutions are found as the quasi-steady state solution when
the velocity is turned on more quickly. The ejection of blobs of fluid is an impor-
tant process in reaching the quasi-steady state; to reach a steady state friction is
needed. A comparison between possible steady state solutions and the final time step
of the initial value problem shows the relationship between them. In the initial value
problem, the fluid that is trapped within closed streamlines near the topography is
composed of fluid which originated over the topography and fluid which originated

upstream.

We consider the flow over finite topography in one layer. The development of
the flow is different depending on the height of the topography. Each run is compared
with the quasi-geostrophic simulation. For small topography (ho = 0.25) the finite
depth solutions show more rapid development of the flow over the topography due
to the enhancement of the flow there. As hq is increased, the eddy shedding process
changes, such that two cyclonic eddies are created when hy = 0.5, and finally, when

the topography fills up most of the water column, the eddy remains trapped over the
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topography and oscillates on and off the topography while rotating clockwise around

it.

Because stratification is important in the ocean we consider flow in two two—
layer models. First we consider flow over small topography. In this model, a warm
core, bottom trapped, cyclonic eddy is shed, with more fluid remaining over the to-
pography with increasing stratification. The results of the model are similar to those
found by Huppert and Bryan (1976) in a study of flow in a primitive equation model
over small topography. We concentrate on two values of stratification to illuminate
the dynamics of the model and compare the results to the one-layer model results.
We extend this model to include the effect of finite topography, allowing the inter-
face to intersect the topography. In this quasi-geostrophic model a cyclonic, surface
intensified, cold-core eddy is shed and more fluid remains over the topography with
decreasing stratification. We concentrate on the same two values of stratification and
show how the dynamics are controlled by the lower layer depth. The steady solutions
in Chapter 3 provide a guide in the study of the time-dependent solutions, although
they are not good predictors of the final steady state solutions when fluid remains

trapped over the topography.

The finite depth model allows exploration of a previously unexplored parameter
range. This model requires that the Rossby number be small and the stratification
strong enough such that isopycnals do not climb up over the topography. In the
finite depth model, we must choose the circulation in the lower layer to complete
the solution. We choose the circulation to remain zero for all time in this initial
value problem. This choice affects the dynamics of the flow. In particular, instead
of the interface being raised near the topography, which one would have predicted
from previous work, the interface is low near the topography. The structure of the
shed eddy is independent of this because it dcpends locally on its potential vorticity

structure which would not be affected by the circulation around the topography.
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The two finite-depth models require the development of a modified contour
dynamics method. This method has more general applications than has been ex-
plored here. For instance, one could consider elliptical topography instead of circular
topography, straight line topography or the interaction of constant potential vorticity

patches with islands as briefly described in Appendix C.
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Chapter 5

Conclusions

5.1 A Summary of the thesis

In this thesis we describe flow over isolated topography using several different mod-
els in an attempt to gain understanding of what occurs when a uniform flow field
interacts with finite topography. We begin by studying the structure of stagnant
Taylor columns on the S-plane. These solutions are valid for a time scale which
is comparable to the spin-up time. We move beyond quasi-geostrophic theory and
find steady solutions for flow over finite topography in a one-layer and a two-layer
model. When closed streamlines form these solutions are valid for time scales short
compared to the spin—up time and do not include frictional effects. We finally con-
sider the time-dependent problem of flow initiation over topography in bot* one and
two—layer models and look at the flow over the advective time scales. The results of

each of these studies are discussed below.

In Chapter 2 we find stagnant Taylor column solutions for flow on the (-
plane of the type that Ingersoll (1969) found for flow on the f-plane. In this quasi-
geostrophic model, the topography is large enough such that closed streamlines form

in the fluid. Within closed streamlines the flow is stagnant. We use an iterative
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boundary integral technique related to contour dynamics. Because we have devel-
oped a general technique, the solutions that we find do not require that an analytic
solution of the problem be found. To test the numerical method, we reproduce Inger-
soll’s (1969) solution for flow on the f-plane over a right circular cylinder in which the
Taylor column is contained within a circle. We find that the Taylor column becomes
elongated perpendicular to the flow direction when the topography is a cone, giving
the Taylor column a tear-drop shape. We suggested that this shape is representative
of what may be found for flow over other monotonic axisymmetric obstacles. The
solution is also found for flow over a right circular cylinder on the 3-plane. For west-
ward flow, the Taylor column becomes elongated parallel to the flow and is trapped
toward the northern portion of the topography. For eastward flow, the situation is
quite complicated because of the generation of stationary Rossby waves downstream
of the topography. The Taylor column is slightly elongated perpendicular to the
background flow. However, closed streamlines can appear downstream of the topog-
raphy. It was not possible using our numerical technique to find consistent solutions
such that these regions were also spun down. Experience with the numerical method
suggests that the stagnation point of the Taylor column always lies on the boundary
of the topography, where the height goes to zero. We infer from this it may not be
possible to find the stagnant Taylor column for flow over topography which does not
have compact support. Additional solutions to the inviscid problem appear in the
process of finding the frictional solution. We call these intermediate retention solu-
tions. There is a patch of fluid which is stagnant, but it is contained within additional
closed streamlines. These solutions are valid for time scales short compare to the spin

up time.

In Chapter 3, steady flow over finite topography is considered. In the first
part of the chapter, solutions are found for flow in a barotropic fluid. These solutions
are extensions to those found by Bannon (1980) for flow over a Gaussian obstacle

in the shallow water model. Because we consider flow over the right circular cylin-
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der, analytic solutions are possible and a more extensive comparison can be made
between the quasi-geostrophic and finite depth solutions. The flow field for the finite
depth solution shows marked differences from the quasi-geostrophic solution which
are illustrated by comparing the solutions themselves as well as by comparing global
quantities calculated from the stream function. The solution can be divided into
two parts: the topographic component (completely even in y) that is forced by the
potential vorticity anomaly caused by vortex squashing and is similar to the quasi-
geostrophic solution, and the island component (completely odd in y) which is forced
by the application of the matching conditions at the boundary of the topography. In
the quasi-geostrophic solution the odd part is simply the background flow. The finite
depth model allows several interesting features when the effect of 8 is strong. The
transport is increased over the topography relative to the background flow for both
eastward and westward flow in this regime, a reflection of the tendency for streamlines
to follow lines of constant background potential vorticity when the f—effect is large.
For eastward flow, the drag can be an order of magnitude larger than that predicted
in quasi-geostrophic theory due to the quadratic dependence of the pressure on the
velocity found through the conservation of the Bernoulli function. The model has

some physical limitations which are discussed further in Appendix B.

In the second part of Chapter 3 we discuss flow over finite topography in a
stratified two-layer model in which the interface intersects the topography. This
model contains a new parameter regime in which quasi-geostrophic dynamics are
consistently applied, but the topography has order one height. This model is an
extension of Buzzi and Speranza’s (1979) work. They considered quasi-geostrophic
flow near two different obstaclc shapes in a linearly stratified fluid, a small (order
Rossby number) hemisphere, and vertical plate that obstruct the basic flow. The
bottom is an isopycnal surface in the first example, and in the second example,
isopycnals intersect the topography so that flow goes around the obstacle in the

lowest levels. In their model, at a wall, the stream function depends only on the
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vertical coordinate and its functional dependence is chosen arbitrarily. In our model,
we consider an obstacle that has both a finite horizontal cross-section as in their first
example, and a finite vertical cross—section as in their second example, and we must
choose the circulation around the topography in the lower layer. We obtain a solution
which contains dynamics consistent with both examples. As in the barotropic finite
depth model, the flow can be divided into an odd component in y (driven by the wall
like character of the obstacle) and an even component in y (driven by the potential
vorticity anomaly over the topography in the upper layer). The fluid in the lower
layer is required to go around the topography but that does not necessarily mean
that closed streamlines have formed in the flow. We choose to consider solutions in
which the circulation in the lower layer is zero, as is consistent with the solution being

the steady state of an initial value problem where there is no flow anywhere initially.

Fluid is more easily trapped in the upper layer when the stratification is weak;
in a two-layer model of flow over small topography there is more trapped fluid in
the lower layer when the stratification is strong. When the stratification is weak,
the upper layer is strongly coupled to the lower layer and the effective height of the
topography is larger in the finite depth model. In the small topography model of
McCartney (1975) when the stratification is weak, the vertical penetration scale is
larger so that the effect of the topography is spread throughout more of the water
column. The model breaks down when the interface goes above the topography,
which occurs more easily for weaker stratification. The interface is depressed near
the southern part of the topography, and raised in the north. This effect 1s enhanced
for background flows with vertical shear whereas in the small topography model the
interface is raised as an axisymmetric bump over the topography. Examples are also

shown with the effects of 3 included.

In Chapter 4, we consider the initial value problem of flow over topography on

the f-plane. We restrict ourselves to flow on the f-plane so that we can use the method
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of contour dynamics to isolate the effects of the time-dependence of the background
flow, the finite topography, and stratification on the shedding and trapping of inviscid
eddies over the topography. First we examine flow over quasi-geostrophic topography
and show that the time-dependence of the background flow is an important factor
in determining how much of the fluid that originated over the topography remains
in the initial value problem. We suggest that Johnson’s (1983) maximum retention
solution in which the maximum amount of fluid that originated over the topography
remains there can be realized when the flow is turned on smoothly over a long period
of time. We construct a family of steady solutions in which only part of the fluid that
originated over the topography is retained there, and we suggest that one of these

solutions is obtained as a quasi-steady state in the initial value problem.

We then consider the initial value problem in the finite depth model. A new
method is developed to apply boundary conditions at circular boundaries, extending
the range of problems that can be considered with the method of contour dynamics.
We solve the problem in the two regions over the topography and away from the
topography separately using traditional contour dynamics, and then construct zero
potential vorticity solutions to match the two regions. Because there is a change in
the symmetry o. the steady solution when the topography is finite and the flow is
horizontally divergent, the time-dependent solutions for flow over finite topography
in a barotropic fluid look quite different from quasi-geostrophic solutions. Two new
dynamical regimes are illustrated. When the topographic height is half of the depth
of the fluid, two cyclonic inviscid eddies are created, instead of only one as seen
in the quasi-geostrophic model. When the topography takes up most of the water
column, the fluid oscillates on and off the topography, moving clockwise around the

topography without shedding any fluid in what appears to be a stable oscillation.

The eddy shedding process in the two-layer model is considered so that the
effect of stratification can be illustrated. When the topography has only an order
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Rossby number height, the shed eddy is cyclonic, warm-core, and bottom-trapped.
In contrast, in the finite topography model, the shed eddy is cold-core, cyclonic and
sv.face-intensified, which can be seen by calculating the interface height. The differ-
ence between the results from the finite depth and small topography steady solution
provides a guide for understanding the results of the time-dependent experiments.
The parameter that effects the development of the flow in the finite depth model is
the ratio of the height of the topography in the upper layer to the upper layer depth.
The finite depth two~layer model is shown to have dynamics consistent with the ap-
proximations and illustrates a new dynamical regime in the study of eddy shedding

off topography that has not been considered before.

In synthesizing the results in the Chapters 2, 3, and 4 it becomes clear that
the solution of flow near topography depends in detail on the potential vorticity and
thus the history of the fluid parcels that end up trapped over the topography. We
have studied three different types of solutions that are relevant for three different
time scales. In Chapter 2, the potential vorticity of the trapped fluid is zero, and
the fluid parcels were assumed to have originated upstream, but their relative vor-
ticity is lost through the action of bottom friction. In Chapter 3, the fluid within
closed streamlines originated upstream and its potential vorticity is determined by
upstream characteristics. Finally, in Chapter 4 we study solutions in which within
closed streamlines some of the fluid parcels originated over the topography with rel-
ative vorticity of zero, while other fluid parcels originated upstream. We show that
the amount of either type of fluid that is trapped over the topography depends on
the time history of the background flow and on the point in time that we choose to

look at the solution.
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5.2 Advantages and limitations of the models

Throughout this thesis, inviscid, non-linear dynamics is of order one importance,
and the flow is solved for over an infinite domain so that numerical friction, radiation

conditions, channel walls, or periodic boundary conditions do not affect the solutions.

The study in Chapter 2 helps to answer the question as to what determines
the shape of Taylor columns in a barotropic fluid. Because all of the solutions to
this problem that have been found have the stagnation point of the Taylor column
on the edge of the boundary, we conjecture that it is not possible to find a solution
for smooth topography, but we have been unable to prove that this is true. That
we were unable to find solution for smooth topography could be, however, because
the technique that we use is not suitable for the problem of finding the shape of a
Taylor column when the topography is not compact. Also, it is not clear at this point
how one would go about extending the criterion that Ingersoll (1969) developed for
the conditions at the boundary of the Taylor column to either a layered model or a
continuously stratified model. For this reason, as well as the large time-dependence in
actual oceanic flow these solutions may have limited application to real oceanographic

situations.

The finite depth models studied in Chapter 3 have the advantage of allowing
analytic solutions to be found, so that a thorough exploration of parameter space
is possible, and new parameter regimes are examined. The barotropic model allows
consideration of the interaction of the effect of finite topography and the effect of
B. We have already discussed some of the physical limitations of this model. In
particular, the vertical velocity is infinite along the boundary of the topography in this
model due to the fact that there are no vertical variations in the horizontal velocity,
and the pressure is discontinuous along at the edge of the topography. These problems
are discussed further in Appendix B. The finite step in the topography also introduces
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resonant Rossby waves, making the drag fall off more slowly than expected from the
results of models of low over smooth topography, and the Rossby waves downstream
of the topography can form closed streamlines, making the steady solutions suspect.

These limitations probably do not affect the qualitative results of the analysis.

The two-layer finite depth model extends quasi-geostrophic theory to a new
regime in which the isopycnal intersects the topography. The geometry of this model
is quite special but gives reasonable qualitative results and demonstrates a parameter
regime that has been unexplored. Because the geometry requires that the lower
layer depth and the topographic height be approximately the same, the solutions
are not very general, and a different model must be used to consider cases in which
the topographic height and the lower layer depth are determined separately. The
calibration of the model in terms of a continuously stratified ocean is unclear, so
the appropriate values for the parameters in the model to correspond to a realistic
oceanic situation are unknown. In particular, we expect that the model would be
relevant to situations in which the stratification is localized in the vertical, and above
the region of strong stratification, the fluid is reasonably barotropic. If the structure
of the stratification were different, we expect that the flow would be qualitatively

different from what we foun in this simple two-layer model..

In Chapter 4 we consider the time-dependent eddy shedding process in an
infinite domain so that unlike most other numerical solutions we do not have to worry
about the effect of channel walls or radiation conditions. In addition, the method of
contour dynamics is not computationally intensive. We are of course restricted to
considering only obstacles that have depths which are piecewise constant, flow on the
f-plane, and flow with no background vertical shear. This last requirement is probably
quite restrictive for flow in the the ocean where the flow tends to be surface-intensified.

However, we do expect that the qualitative results are robust. We have developed a
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modification to contour dynamics so that boundary and matching conditions can be

applied.

The effect of finite friction cannot be considered directly with these models.
We can, however, make some guesses as to what its effect would be. We would expect
that friction would reduce the strength of the shed eddy and the flow within the shed
eddy would weaken with time. Friction could also effect the circulation in the lower

layer so that it could change in time.

5.3 Relevance of modeling results to the ocean

There are several qualitative results contained in this thesis that may help with the

interpretation of oceanic observations and more complicated model results.

The results of Chapter 2 suggest that for topography that monotonically in-
creases in height the Taylor column would be stretched in the direction perpendicular
to the incoming flow, and would be narrower near the stagnation point located on
the right hand side of the topography looking downstream. For westward flow, the
Taylor columns would be elongated parallel to the incoming flow. These steady so-
lutions are set up over the spin up time of the fluid and may be qualitatively correct

under situations in which the background flow is fairly steady.

The steady solutions over finite topography in the barotropic model discussed
in Chapter 3 show that quasi-geostrophic solutions may vastly underestimate the
drag that the topography exerts on the flow even for relatively small Rossby numbers
and that topography with relatively large horizontal extent (large S-effect) exerts a

large amount of drag on the background flow field.

The two-layer finite topography model demonstrates that it is likely that flow

will go around tall bathymetric features in the lower levels, and over them in upper
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levels. We see evidence of this in the study done by Vastano and Warren (1976),
where the lines of constant potential density tend to be split by the topography in
the lowest levels, while going over the topography in the upper levels. Also, for finite
topography, one expects that the isotherms will tend to be lower on the right side
of the topography looking downstream than on the left hand size, and that vertical
shear would enhance this effect. These displacements may be evident in some of the
density sections of Roden and Taft (1985) although the time-variability in the region

of study makes interpretation of the flow field in terms of a steady model difficult.

The eddy shedding studies are also relevant to oceanographic features because
of the highly variable flow fields in the ocean. The experiments done in the one-
layer model by varying the turn-on time of the background flow suggest fluid can
be trapped over the topography in the initial value problem and that this fluid can
remain over the topography for all time. The amount of trapped fluid also depends
critically on how the background flow is initiated, so the flow field in regions of the
ocean where the ocean is swiftly changing from one background flow regime to another
would look different from a place where the flow is changing more slowly. It is not
clear which way of turning on the flow, whether quickly or slowly, is more relevant
to the oceanographic problem. In regions such as the Gulf Stream, the transverse
location of the jet can change rapidly, resulting in a highly variable background flow

field over the New England Seamounts.

In the finite depth experiments a cold—core eddy that is surface trapped is
shed. This is in contrast to traditional quasi-geostrophic theory in which the shed
eddy is warm core and bottom trapped. This suggests a way in which cold—core
cyclonic eddies could be generated in the ocean and variability might be introduced
into the upper levels of the ocean by the interaction of flow with topography. For
instance, Roden and Taft (1985) study the region in which the Kuroshio crosses the

Emperor Seamounts. There is clear enhanced variability near the surface. This could

208




be caused by the mechanism described in our two-layer model, or by the surface

intensification of the Kuroshio.

We have not tried to make detailed predictions with the models in this thesis,
partly because we have left out some important effects in our search for problems
that are both easy to pose and tractable, but also because it became clear during the
modeling that the detailed history of the flow field must be known in order to make

detailed predictions about the evolving state of the flow field.

5.4 Future work

The modeling done in Chapter 4 required the development of a modification to the
traditional contour dynamics method allowing boundary conditions to be applied
on solid boundaries. Appendix C outlines the application of the method to the
problem of a vortex interacting with an island, and this problem deserves more of
an exploration that was given here and merits an extension to a two-layer model
. There are two more extensions to the time-dependent modeling that should give
results that would be important for the interpretation of oceanic flow. The first is the
study of the interaction of an isolated jet with topography. This could be approached
initially with the one-layer quasi-geostrophic model. The second is the modeling of
the interaction of flow with more than one topographic feature. Both of these have

application in the study of the Gulf Stream as it crosses the New England Seamounts.
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APPENDIX A

In order to solve the integral equation 2.11 numerically, it must be discretized.
Each linear equation is a discretization of the integral equation evaluated at x}. The
contribntions from the first integral of 2.11 is

N N xj+l BG ,
L=SI;= Z/ $(x") 2= (xi,X')ds’ (A.1)
7=0 3=0 x; an
and I;; for j # 1 — 1,7 can be estimated as
1 oG
L; = 518(x;) + ¢(xj41)s 55000, X41/2) | X1 = %5, (A.2)
where X;i1/2 = 2[Xj + X;;1] and the 10ormal direction is taken perpendicular to

X;+1 — X;. Near the singularity of G, when j = 7 or ¢ + 1, I;; is evaluated by
allowing the contour between x; and x;,; to be a circular arc with radius of curvature
r.. Along this portion of the arc, the singular part of the Green’s function can be
approximated by its most singular part; that is dG/9n'(x;,x') = 1/4nr. for any value
of b. Then ¢ is expanded in a Taylor series along the arc

o6) = ¢+ =246, - 0
for #;_; < § < 8; and
o) = b+ 00 -0

for §;_; < 6 < 8, where z is the point on the arc of the circle with radius r. and
angle §. Then we change variables to # in A.1 and integrate with respect to 8 to find

1 1
L; = 47(0’+’ - 0:')5(4):' + bis1)

and 1 1
I‘;i-x = Zr‘(aj - 05—1)5(‘1’1’ + ¢J‘—1)-

Now 0;,8;_, and 0;,, depend on z;,z;_y, and z;4;. Thus in general we can write

Z(aJ(x1) + b;-1(x:) )¢(31) = tha¢(x1)

7j=0

The contribution from the next integral of 2.11 away from the singularity can
be performed similarly to the first integral,

M; = ZM,, = Z/ (x.,x)ds (A.3)

j=0
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Then we estimate M;; for j #1 — 1,¢ by
_136(x) 080

M = 5l—- 51O X 0172) | Xj01 — X,

Near the singularity, we expand g% in a Taylor series

) 8¢
_3_? _ @ n 5%,‘ T Onj-1
On On s ’
where s =| x; — x;_1 |. Expanding the Green’s function about s = 0 we find that to

lowest order

1 1
G(s) = 2—7;(ln | s | +1Inb7).

We then integrate A.3 with respect to s between —s(x;) and 0. To find the M;; we
just replace j + 1 for j — 1. We can thus write

)
b — miidy” = 8ijd;.

This set of equations is inverted using an IMSL routine. In order to improve
the guess for the boundary, a relaxation scheme is used, again following Meacham
(1988). The deviation of ¢ + ¥(%) from C is defined as e; at each point, and the new
positions for the points on the contour are given by

(2000 = (22,38) = = k0, ~ ),

for each i, and the direction is given by an approximation to the tangent direction
at z;. Typically, about 30 points are used and a is 0.1 or 0.2. The procedure works
best when the initial guess for D is contained within the correct solution for a given

value of C.
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APPENDIX B

The shallow water model that we use in Chapter 3 is valid as long as the aspect
ratio of the fluid is small. That is

H?/L? << 1,

where H is the depth of the fluid and £ is the horizontal length scale in the problem.
When there is a finite step in the topography, the validity of this requirement is
questionable because length scale of the variations in the topography has gone to zero
(L is small) and the aspect ratio becomes large. To understand if we are justified
in using the shallow water model in the limit of a finite step in the topography, we
consider the flow field induced when a uniform flow impinges on tupography which
changes from one value to another linearly over a finite distance and then take the limit
of this distance going to zero. In this limit, we will show that the matching conditions
used in Chapter 3 are correct. We use the barotropic shallow water equations given
in Section 3.3.1 and use the scaling developed in that section.

The depth of the fluid for this problem is given by

1 z<0
h = 1—%1: I<z<a
l—ho T > a.

Upstream of the topography, the flow is zonal and uniform with size 1. There are no
y variations and the continuity equation gives

hu = 1.

To find v we use the potential vorticity equation

rR—1
vy = .
€

We integrate this equation with respect to z and find that

0 z<0
v =1 —hoz?/2ac 0<z<a (B.1)
—ho(z — a/2)[e z> a.

If we now take the limit @ — 0 of B.1 we find that v and uh are continuous at z = 0,
the edge of the topography. We now evaluate the pressure. The Bernoulli function
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is conserved on streamlines and for this problem is given by B = i) where 9 is the
transport stream function. We can find P from this,

P =y —s(u’ +v7).

For continuous topography (a finite), the pressure is continuous in z. When we take
the limit a — 0 we find that the pressure is discontinuous at z = 0 and the jump in
the pressure is

€ h0(2 - ho)
2 (1—ho)?

Only in the quasi-geostrophic limit (¢ — 0) is the pressure continuous.

Pz =0*)— P(z =0") =

We have come to the conclusion that for the model that we use in Section
3.3, the pressure is discontinuous on the edge of the topography. To reconcile this
with the use of the shallow water equations, we require that H << aL << L so
that the aspect ratio of the fluid is smali, but the change in the topography can be
approximated as a step. This example justifies the matching conditions that we apply
in Section 3.3: that the radial transport and the tangential velocity are continuous.
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APPENDIX C

The same method that is used in Chapter 4 can be used to study the interaction
of isolated eddies with a cylindrical obstacle that reaches to the surface. This physical
situation was used initially to test the method. It can be done in both one and two
layers.

The evolution of a patch of constant vorticity near a circular obstacles is con-
sidered. In general the stream function 3 satisfies

81 + J(v,10) = 0,

where IT = V?3 and v satisfied boundary condition on the circular cylinder (r = 1).
There is no flow into the boundary

u-n =0, (C.1)
and there is no circulation about the island

u-dl = 0. (C.2)
f

In one layer, one might think initially that the appropriate Green’s function
could be found such that the boundary conditions are automatically satisfied. The
Green’s function can be found for the problem of flow of a fluid due to an arbitrary
patch of vorticity near a circular cylinder that has no flow into it as well as no
circulation around it. This Green’s function is

!
G(z,z') = L In —JX—T&,
2 |x|lmp — x|
and it is found by the method of images. In order to use the method of contour
dynamics, the area integral that determines the stream function must be transformed
into a contour integral to be able to find the velocity. This requires that

oG 4G

8z~ 8z”

and the same for the derivatives in y. The Green’s function does not contain this
symmetry. This can be understood by considering the analogous problem of a patch
of vorticity near a straight wall where the Green’s function can be found by the
method of images. One can then conformal map the problem to a flow around a
circle. However, the conformal mapping does not transform the boundary conditions
which are applied only in z and y coordinates and not in the z' and y’ coordinates,
and the transformation changes the symmetry of the Green’s function.
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Insteady the solution is found by letting the solution be a sum of the solution
when there is no boundary and a zero vorticity solution,

n=N/2

P = 2L//Hln |x — x'| + Z a,r""e "™ + blnr.
™

n=-N/2

The contribution to the velocity from the vortex patch can be found in the usual way
by performing a contour integral,

1
P yP) = — —z' ' dy'
(uP,v?) 2 f:‘) In|z-2'|[dz',dy].

In cylindrical coordinates the radial velocity 144 and the azimuthal velocity 3, are

given by
n=N/2

-—-1—¢‘9 =uPcosf + vPsinf + Z ina,r M4
T n=—N/2
and
n=N/2 ) b
P, = —uPsin 8 + vPcos 8 + Z -—Inla,,r'l"le""‘a + -
n=-N/2 T

The particular solution can be evaluated at 2N points around the circle at
r = 1 an expanded in a fourier series in 6 using an FFT

n=N/2

uPcos @ + vPsinb = Z T
n=-N/2
Thus applying the boundary condition C.1 gives
Uy,
Ay = ——.
in

Finally, to step forward the contour, we evaluate the contribution to the velocity from
the zero vorticity solution and from the contour integral at the points on the contour.

In the example shown in Figures C.1 and C.2, a background flow with zero

vorticity is added
sin 0

'pbbackground = —rsinf +4q
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and the vortex patch has vorticity . The vortex patch does not at any time intersect
the boundary and the area is conserved to within a few tenths of a percent using

N = 32.

The accuracy of the location of the contours depends on the time-step, the
spacing between the points on the contour and N. The trade off between the point
spacing and N can be quantified. For equal accuracy from both the spatial contribu-
tions we should require that

Az? = R~N2,
where R is a representative distance from the cylinder. Then we can solve for N when
the number of points on the contour is 50.

4In Z

In R

When R is order one, then N = 8 should be adequate. In all of the runs in Chapter
4, N = 32 so that the error associated with truncating the sum is at least as good as

the error associated in the point spacing.
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Figure C.1: Evolution of the contours when ¢ = 5 at ¢ = 0,0.5,...,4. The location of
the contour looks quite similar to what Nof (1988) found in a laboratory experiment
in which he generated an eddy near a cylinder by continuously injecting fluid to form
the eddy. When the eddy became large enough, it began to interact with the cylinder
in a very similar manor as that shown here.
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Figure C.2: Evolution of the contours when ¢ =1 at t =0, 1,...,4. The eddy is split
by the cylinder and then merges after the two pieces go around the cylinder.
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